Intravenous Fibrinolysis for Central Retinal Artery Occlusion
A Cohort Study and Updated Patient-Level Meta-Analysis

Brian Mac Grory, MB BCh BAO, MRCP; Alex Nackenoff, PhD; Sven Poli, MD; Martin S. Spitzer, MD; Max Nedelmann, MD; Benoit Guillen, MD; Cécile Preterre, MD; Celia S. Chen, MBBS, PhD; Andrew W. Lee, MBBS, MPH; Shadi Yaghi, MD; Christoph Stretz, MD; Idrees Azher, MD; John Paddock, MD; Tatiana Bakaeva, MD PhD; David M. Greer, MD, MA; Julie G. Shulman, MD; Robert G. Kowalski, MBChB, MS; Patrick Lavin, MB BCh BAO, MRCP; Eva Mistry, MBBS; Kiersten Espaillat, APRN; Karen Furie, MD, MPH; Howard Kirshner, MD, PhD; Matthew Schrag MD, PhD

BACKGROUND AND PURPOSE: Central retinal artery occlusion results in sudden, painless, usually permanent loss of vision in the affected eye. There is no proven, effective treatment to salvage visual acuity and a clear, unmet need for an effective therapy. In this work, we evaluated the efficacy of intravenous tissue-type plasminogen activator (IV alteplase) in a prospective cohort study and an updated systematic review and meta-analysis.

METHODS: We enrolled consecutive patients with acute central retinal artery occlusion within 48 hours of symptoms onset and with a visual acuity of $<20/200$ from January 2009 until May 2019. The primary outcomes were safety and functional visual acuity recovery. We compared rates of visual recovery between those treated with alteplase within 4.5 hours of symptom onset to those who did not receive alteplase (including an analysis restricted to untreated patients presenting within the window for treatment). We incorporated these results into an updated systematic review and patient-level meta-analysis.

RESULTS: We enrolled 112 patients, of whom 25 (22.3% of the cohort) were treated with IV alteplase. One patient had an asymptomatic intracerebral hemorrhage after IV alteplase treatment. Forty-four percent of alteplase-treated patients had recovery of visual acuity when treated within 4.5 hours versus 13.1% of those not treated with alteplase ($P=0.003$) and 11.6% of those presenting within 4 hours who did not receive alteplase ($P=0.03$). Our updated patient-level meta-analysis of 238 patients included 67 patients treated with alteplase within 4.5 hours since time last known well with a recovery rate of 37.3%. This favorably compares with a 17.7% recovery rate in those without treatment. In linear regression, earlier treatment correlated with a higher rate of visual recovery ($P=0.01$).

CONCLUSIONS: This study showed that the administration of intravenous alteplase within 4.5 hours of symptom onset is associated with a higher likelihood of a favorable visual outcome for acute central retinal artery occlusion. Our results strongly support proceeding to a randomized, placebo-controlled clinical trial.

Key Words: ischemic stroke ■ retinal artery occlusion ■ tissue-type plasminogen activator ■ treatment ■ visual acuity

Central retinal artery occlusion (CRAO) interrupts blood supply to the retina, leading to sudden painless vision loss. It is a form of acute ischemic stroke as recognized by the American Heart Association. Acute CRAO may be amenable to treatment with intravenous fibrinolytic therapy, and this concept has been reported since the 1960s initially with streptokinase and then urokinase before the use of recombinant tissue-type...
plasminogen activator (IV alteplase) became more widespread for cerebral stroke after the results of the NINDS trial. However, its use is not referenced in any professional stroke guidelines and there has only been a single, small, randomized-controlled trial. In 2015, we reported improved visual acuity outcomes in patients treated with intravenous fibrinolysis (urokinase, streptokinase, or alteplase) within 4.5 hours of the onset of vision loss in a subject-level meta-analysis. In that study, we found that conventional treatments like anterior chamber paracentesis and ocular massage surprisingly reduced the probability of recovery of visual acuity to less than half that of no treatment, that is, the natural history. However, fibrinolysis increased the rate of recovery from 17.7% to almost 50% if initiated within 4.5 hours of onset, although there did not seem to be a benefit beyond 4.5 hours. Subsequently, we polled academic medical centers in the United States to determine the frequency of use of IV fibrinolytic agents for acute CRAO and found 53% of respondents indicated they currently treat selected patients with acute CRAO with IV alteplase. These 2 studies form the foundation for acute CRAO and found 53% of respondents indicated they currently treat selected patients with acute CRAO with IV alteplase. These 2 studies form the foundation for acute CRAO. We incorporated this data with results from our prior analysis and new subject-level data from 3 additional observational case series and one randomized placebo-controlled clinical trial to generate the largest meta-analysis to date of the efficacy of IV alteplase for acute CRAO.

METHODS
Observational Cohort Study
The data that support the findings of this study are available from the corresponding author upon reasonable request. This study was approved by the institutional review boards of Vanderbilt University Medical Center (approval #160767) and of Rhode Island Hospital (approval #1242500) and the observational cohort includes only patients from these institutions. The requirement for written, informed consent was waived. Inclusion criteria were adults presenting with sudden, painless vision loss, visual acuity of 20/200 or less upon arrival in the emergency department (ED), best corrected visual acuity of 20/100 or better in the affected eye before the CRAO, and no other ophthalmologic or neurological diagnosis better accounting for the vision loss. Patients were included from January 2009 to June 2019. Administration of IV alteplase in a timely manner requires a well-designed clinical work-flow, so we implemented a protocol for rapid, systematic evaluation of acute CRAO similar to the “stroke code” system, incorporating an immediate dilated ophthalmologic evaluation. Patients presenting within 6 hours of symptoms onset and who did not have contraindications for intravenous fibrinolysis (including active bleeding, recent stroke or hemorrhage, or use of anticoagulation) were offered treatment with IV alteplase at a dose of 0.9 mg/kg (with 10% administered as a bolus and the remainder infused over 1 hour). Informed consent was obtained before treatment. The time interval for IV alteplase treatment was reduced to 4.5 hours in July 2015 in response to a meta-analysis of observational data suggesting a lack of benefit when fibrinolysis was administered in the 4.5 to 6 hour time window. Patients were admitted to the stroke unit for intensive neuromonitoring, systematic risk factor screening, and implementation of secondary prevention strategies. An illustrative protocol is shown in Figure 1. A comparison between our protocol for IV alteplase administration, the current FDA labeling for alteplase for acute stroke treatment, and the ECASS III trial protocol is included as Table I in the Data Supplement. Visual acuities are reported in the conventional Snellen scale, but statistical analysis of visual acuity was performed using logMAR equivalencies as this is closer to a linear scale. The time from symptom onset to arrival in the ED and the time until the first contact with any medical provider were documented. We defined visual acuity “recovery” as a dichotomized outcome representing functional recovery of vision with a final visual acuity of 20/100 or better. Because all patients in this study presented with a visual acuity of 20/200 or worse, the smallest improvement meeting this threshold was 0.3 on the logMAR scale (3 lines on the Snellen chart). Prior studies often used any improvement of 0.3 on the logMAR scale to indicate recovery, so we also report this statistic. The significance of differences in visual acuity recovery rate and all other dichotomized outcomes was assessed with the \(\chi^2 \) test. To account for the higher rate of spontaneous recovery among patients presenting earlier within the time window since it is best known, we performed an additional analysis on patients who presented within the 4-hour time window but did not receive alteplase. The 4-hour window was chosen under the assumption that it takes at least 30 minutes to execute the acute stroke protocol including neuroimaging, laboratory testing, and preparing alteplase (and as such, these patients could feasibly have received alteplase). We incorporated additional patients from a second site (Rhode Island Hospital) in this analysis of time-matched controls to improve statistical power and generalizability. None of the patients included in this observational study were included in our prior meta-analysis. Clinical characteristics are reported using descriptive statistics and compared between the 2 groups using an unpaired Student t-test for continuous data and \(\chi^2 \) test for categorical data.

Subject-Level Meta-Analysis
The systematic review and meta-analysis were performed in accordance with the Meta-Analysis of Observational Studies in Epidemiology guidelines. This study is registered with PROSPERO (CRD42020145734). We performed an updated meta-analysis from August 1, 2014 until May 23, 2019 using the following search string: “retinal artery occlusion” OR “retinal ischemia” AND “thrombolysis” OR “fibrinolysis” OR “tissue plasminogen activator” OR “streptokinase” OR “urokinase” OR “tenecteplase.” No limitations on language were placed. We excluded studies with fewer than 5 patients to reduce the risk of selection bias, as well as studies with insufficient detail concerning visual acuity outcomes. In studies where patient-level data were not available, the corresponding author was contacted directly. Patient-level data was shared in a de-identified fashion and using arbitrary identifiers. The methodology is described in more detail in a previous study. We initially performed an analysis including all thrombolytic agents (alteplase, streptokinase, and urokinase), and this section includes all the
subjects from our prior meta-analysis as well as relevant studies that have been published since 2015.6 We then performed an analysis restricted to alteplase alone and thus only two studies from our prior meta-analysis were included (Kattah et al15 and Hattenbach et al16). Subject level data were reviewed for harmonization, and subjects with incomplete data, confounding medical illnesses (eg, occipital lobe stroke), or who did not meet the inclusion criteria for our cohort were censored. Studies were combined in the meta-analysis using a random-effects model weighted by the inverse of variance using the MIX1.7 software, validated by JASP. Linear regression of combined, subject-level visual acuity outcomes was performed in R.

RESULTS

Observational Cohort Study

We enrolled 112 patients with acute CRAO. Twenty-five patients (22.3% of the cohort) were treated with IV alteplase, of whom 16 (14.3%) were treated within 4.5 hours of time last known well. Of patients presenting in the 4.5-6 hour time window, 8 out of 13 were treated with IV alteplase. Demographics for the primary study cohort are in Table; unadjusted, subject level outcomes are shown in Figure 2A and 2B. Patients treated with alteplase presented to the ED earlier (P=0.008). They were also older (P=0.014) and had a lower visual acuity on presentation (P=0.026) compared with the patients who did not receive alteplase (P=0.026). One patient developed CRAO after administration of alteplase for cerebral stroke and was excluded. The median time to arrival in the ED after onset of symptoms for all patients with acute CRAO was 8.0 hours (interquartile range, 5.0–18.3), but the median time to initial contact with any provider was 4 hours after onset (interquartile range, 1.5–12; Table). One patient had an asymptomatic intracerebral hemorrhage after alteplase treatment, which appeared...
to be related to previously undiagnosed cerebral amyloid angiopathy. There were no other adverse events. Forty-four percent (43.8%) of patients treated with alteplase had recovery of visual acuity when treated within 4.5 hours versus only 13.1% of patients not treated with alteplase ($P=0.003$; Figure 2A). Forty-three patients (25 from VUMC and 15 from RIH) presented within 4 hours and did not receive alteplase and achieved visual recovery 11.6% of the time ($P=0.03$). The mean improvement in visual acuity in alteplase-treated patients within 4.5 hours of onset was 1.0±1.1 logMAR versus 0.3±0.7 logMAR for untreated patients ($P=0.001$). When the visual recovery threshold was adjusted to 20/60 (logMAR of 0.5), 31.2% of patients treated with alteplase still met this improvement, compared with 10.8% in the untreated group ($P=0.03$). Patients treated with alteplase within 4.5 hours improved at least 0.3 logMAR 56.3% of the time compared with 35.6% of untreated patients ($P=0.12$). None of the patients treated with alteplase between 4.5 and 6 hours after symptom onset (0/8) recovered.

Subject-Level Meta-Analysis

Figure 3 illustrates the selection of additional studies according to PRISMA guidelines. Finally, we
incorporated our results with a prior subject-level meta-analysis and those of 3 additional cohort studies as well as one randomized, placebo-controlled clinical trial into an updated subject-level meta-analysis to estimate the effect-size of alteplase treatment on visual acuity across a broader population and demonstrate the reproducibility of our findings. We are unable to formally assess publication bias due to the small number of available studies; however, we were able to obtain patient-level data for all but one study and the current analysis represents a capture rate of 80.72% of patients in the world literature who were treated with alteplase within 4.5 hours of CRAO onset. We obtained data for 238 cases treated with any fibrinolytic agent at any time point (see Tables II and III in the Data Supplement for details on the number of patients included per study). This group was comprised of 58.38% men and 41.62% women with a mean age of 65.0±12.9 years. Eighty-nine cases were treated between 0 and 4.5 hours after symptom-onset, and 38 between 4.6 and 6.0 hours. In the earlier analysis, data were available on only 34 cases treated within 4.5 hours. Data were available for 67 patients treated specifically with IV alteplase in <4.5 hours—6 patients from Kattah et al,15 7 patients from Hattanbach et al, 16 7 patients from Nedelmann et al,8 11 patients from Préterre et al,9 20 patients from Schultheiss et al,10 and 16 patients from our current study. The relative contribution of each study is included as Table III in the Data Supplement. The mean age of patients in this group was 69.2±12.3 including 36.9% women and 63.1% men, and

Figure 2. Fibrinolysis at early timepoints is associated with improved visual recovery.

A, Patients with acute central retinal artery occlusion (CRAO) treated with IV alteplase within 4.5 h recovered to a visual acuity of 20/100 or better (logMAR 1) 42.8% of the time compared with 11.6% of the time in patients presenting within 4 h who did not receive alteplase (P=0.03). This was also significantly higher than the recovery rate of 12.5% in all untreated patients (P=0.003) in our observational cohort. When combined with subject-level data from 5 other cohort studies, the result remains similar, with 37.3% recovering when treated within 4.5 h, which is considerably higher than the spontaneous recovery rate of 17.7% (P=0.0005). B, Analysis of the recovery rate after any intravenous fibrinolytic treatment (alteplase, streptokinase, or urokinase) demonstrates a clear effect of time on treatment efficacy. Delay to treatment significantly predicted worse outcome in linear regression modeling corrected for age (P=0.01). C, Forest plot of recovery rate in the 0 to 4.5 h window by study demonstrates a recovery rate of ≥38% across studies, although the effect is reduced slightly by an outlier study (Préterre et al?), which included patients mostly late in the 4.5 h window. D, Change in visual acuity on the logMAR scale after alteplase treatment was similar in all studies; patients recovered by ≤0.98 logMAR. VUMC indicates Vanderbilt University Medical Center.
the unadjusted recovery rate was 37.3%. Only 15.2% of those treated with IV alteplase between 4.6 and 6 hours after onset recovered (n=28, P=0.03). The recovery rate in the early treatment group was also much higher than our estimate of the natural history of spontaneous recovery (17.7% in 396 cases; P=0.0005, Figure 2A).

Using linear regression correcting for age and including patients treated with any intravenous fibrinolytic agent (alteplase, streptokinase or urokinase), time to treatment was associated with recovery rate (P=0.01, Figure 2B) and final visual acuity (P=0.002).

After data harmonization, individual studies (that had at least 5 patients treated with alteplase within 4.5 hours) were combined in a random-effects meta-analysis weighted by the inverse of variance. This analysis slightly increased the recovery rate to 37.9% (Figure 2C) compared with the unadjusted analysis, and this effect is mediated by the presence of heterogeneity (Q=30.5, P<0.0001; i²=83.5% [95% CI, 65.7%–92.1%]). One study reported a lower recovery rate than the others (when excluded, Q is reduced to 7.5, P=0.11, i² reduced to 46.7% [95% CI, 0%–80.5%]). Analysis of improvement in visual acuity on the logMAR scale across studies revealed an improvement of 0.98 ([95% CI, 0.80–1.17], Figure 2D). There was no heterogeneity in this result, and it was consistent with the result obtained from our institutional cohort.

There was a low risk of hemorrhagic complications in the included studies. There were no symptomatic intracerebral hemorrhages in patients treated within 4.5 hours since time last known well and according to standard protocols. Two symptomatic intracerebral hemorrhages occurred: one in a patient treated with both IV alteplase and therapeutic unfractionated heparin starting 4.75 hours after symptom onset and one in a patient treated with alteplase at 9.25 hours post-symptom onset (this patient was ultimately diagnosed with cerebral amyloid angiopathy). Three patients (4.5%) had asymptomatic intracerebral hemorrhage, one patient had orolingual edema and one had a hemorrhage from an undiagnosed abdominal aortic aneurysm, which did not require surgical intervention. A summary of significant adverse events is included as Table IV in the Data Supplement.

DISCUSSION

In this study, we found that protocolized IV alteplase administration in patients with CRAO within the typical acute ischemic stroke window of 0 to 4.5 hours is feasible, safe, and is associated with a more favorable rate of visual recovery than that expected in the natural history. We include a time-matched control group who presented within 4 hours of symptom onset and who were not treated to demonstrate that the natural history is not more favorable among patients who are seen at earlier time points. Further, we supported our claim of potential efficacy of IV alteplase in patients with CRAO with a subject-level meta-analysis—a substantial update to the prior meta-analysis, which was limited by the inclusion
of various fibrinolytic agents and inconsistent administration protocols over a period of about 50 years.

CRAO results in sudden, painless loss of vision in the affected eye, which is usually permanent. In a recent poll, we found that over half of the neurologists in academic hospitals offered IV alteplase to selected patients with acute CRAO7 (no centers polled as part of this poll were included in the current study). The current study found that early administration of IV alteplase after the onset of symptoms improved the rate of visual recovery compared with untreated patients and historical controls. This recovery rate is similar to that encountered in our 2015 study6 and remained significantly higher in patients treated with IV alteplase, even when we conservatively changed the definition of visual recovery to include only those patients who improved above the more-stringent threshold of 20/60 (logMAR 0.5). Treatment efficacy diminishes with greater duration from the time a patient was last known well. A critically important finding from our cohort is that while the median time to ED presentation was 8 hours, the median time to the initial contact with any provider was 4 hours after onset (interquartile range, 1.5–12 hours), meaning a significant fraction of patients with acute CRAO may be candidates for fibrinolysis if they are routed efficiently to EDs capable of administering IV alteplase.

Our literature review yielded no new cases where urokinase or streptokinase were used to treat CRAO, but an abundance of studies using IV alteplase, in line with broader trends in emergency care for acute ischemic stroke. These studies consistently find a positive association of IV alteplase treatment with clinical outcomes. The lower recovery rate in Préterre et al’s cohort9 likely was due, at least in part, to all but one of their patients being in the 3 to 4.5 hours timeframe, where a lower response rate is anticipated. Close monitoring of outcomes in this timeframe in clinical trials will be especially important. We were unable to attain participant-level data for one study.18 This study combined tissue-type plasminogen activator with anisodamine (a compound that acts as a muscarinic acetylcholine receptor antagonist) in the treatment of 48 patients with CRAO. Additionally, the investigators employed a host of adjunctive therapies including nitroglycerin, methazolamide, and ocular massage. The investigators defined an “effective rate” of visual recovery as an improvement of ≥2 lines of visual acuity on the Snellen chart and reported this outcome in 91.67% of patients in the “treatment” group and 70.83% of patients in the “control” group. They enrolled patients at late time points including at least one patient beyond 72 hours since symptom onset. It is not clear that it would have been possible to harmonize these data with the other included studies.

Several arguments have been raised against the use of intravenous fibrinolysis for acute CRAO. The foremost concern is regarding the risk of hemorrhagic complications, particularly intracerebral hemorrhage. However, the experience with administering alteplase in stroke mimics has demonstrated that, in the absence of cerebral ischemia, the risk of intracerebral hemorrhage is exceedingly low.19,20 Approximately 30% of cases of CRAO have coexisting cerebral ischemia detected on diffusion-weighted MRI.21,22 However, in the absence of overt neurological manifestations, such imaging-detected cerebral ischemia would fall within the spectrum of “minor stroke”—a condition in which adverse events related to IV alteplase administration is also very low (2%–2.4% of cases)23,24 and in which the rate of fatal intracranial hemorrhage is 0.9%.25 Furthermore, our continuing experience with IV alteplase specifically in the context of acute CRAO suggests that, when given as part of a protocol and without the adjuvant use of systemic anticoagulation (as was used in some of the earlier studies), it is associated with a low risk of intracranial hemorrhage.

Our observational study is limited by the lack of randomization of treatment and thus we cannot exclude systematic difference between those patients who received fibrinolysis and those who did not. For instance, patients treated with fibrinolysis had a lower visual acuity on presentation than those not treated with thrombolyis (logMAR 2.5±0.3 versus 2.1±0.6), which should lead to a bias against a treatment effect. There are limitations inherent in meta-analysis of predominantly observational studies. The analysis is limited by the presence of only one, small placebo-controlled clinical trial in the world literature and combining observational and randomized data in one analysis is a limitation (although the relative contribution from the one, small clinical trial was minimal). The high recovery rate in those treated with alteplase within 4.5 hours of may be in part explained by spontaneous lysis of the occluding thrombus, that is, this group may have included patients who would otherwise have had amaurosis fugax. However, we included an analysis of patients presenting within 4 hours and who did not receive alteplase and found that the treatment effect of alteplase was a durable one. This work is also somewhat limited by the potential for selection bias, which has the possibility of biasing the results in favor of treatment. We excluded studies with fewer than 5 subjects to reduce the risk of selection bias.

CONCLUSIONS

This study provides key foundational data to support conducting clinical trials with intravenous fibrinolysis in patients with acute CRAO. A clinical trial comparing intravenous thrombolysis using alteplase versus placebo within 4.5 hours of symptom onset is warranted, and we think it should take the form of a pragmatic, multicenter, randomized, placebo-controlled, double-blinded study. The current study allows a more precise estimate of the treatment effect and thus will aid with sample size and power calculations. Our data add to the growing body of evidence that indicates it may be effective and safe. As stroke systems
of care evolve, protocols for identification, triage, and rapid treatment of CRAO should be incorporated.

ARTICLE INFORMATION
Received December 16, 2019; final revision received April 13, 2020; accepted May 6, 2020.

Affiliations
Department of Neurology (B.M.G., C.S., L.A., J.P., T.B., K.F.) and Division of Ophthalmology, Department of Surgery (T.B.) Warren Alpert Medical School of Brown University, Providence, RI. Department of Neurology (A.N., P.L., E.M., K.E., H.K., M.S.) and Department of Ophthalmology and Visual Sciences (P.L.), Vanderbilt University School of Medicine, Nashville, TN. Department of Neurology with Focus on Neurovascular Diseases, and Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Germany (G.P.). Eye Clinic, University Hospital Hamburg-Eppendorf, Germany (M.S.S.). Department of Neurology, Sana Rego Klinikum, Penzberg, Germany (M.N.). Department of Neurology, CHU de Nantes – Laennec Nantes, France (B.G., C.P.). Department of Ophthalmology, Flinders Medical Center and Flinders University, Adelaide, Australia (C.S.C.). Department of Neurology, Flinders University and the Calvary Wakefield Hospital, Adelaide, Australia (A.W.L.). Department of Neurology, New York University School of Medicine (S.Y.). Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston (T.B.). Department of Neurology, Boston University School of Medicine, MA (D.M.G., J.G.S.). Department of Neurology, Henry Ford Hospital, Detroit, MI (R.G.K.).

Disclosures
Dr. Nackenoff reports receiving grant funding from the NIH (T32AG058524). Dr. Spitzer reports receiving grant funding from Novartis, Alcon, Croma Pharmaceuticals and IDx as well as consulting fees from Novartis, Bayer, Altacor, Ltd., Oxford, Geuder and Almemra Sciences. Dr. Guillon reports personal fees from BMS and Boehringer-Ingelheim outside the submitted work. Dr. Yaghi receives departmental funding from Medtronic Inc. for outcome adjudication in an industry-sponsored study. Dr. Stretz received a travel grant from the Neurocritical Care Society to attending the 2017 Neurocritical Care Society Annual Meeting. Dr. Spitzer receives grant funding from the National Institutes of Health (K76AG060001) and NINDS (K23NS011386). Dr. Schrag receives grant funding from the NIH (K23NS011386) and NINDS (R03NS111486 and R21NS106510). The other authors report no conflicts.

REFERENCES