Effect of Routine Low-Dose Oxygen Supplementation on Death and Disability in Adults With Acute Stroke
The Stroke Oxygen Study Randomized Clinical Trial

Christine Roffe, MD; Tracy Nevatte, PhD; Julius Sim, PhD; Jon Bishop, PhD; Natalie Ives, MSc; Phillip Ferdinand, MRCP; Richard Gray, MSc; for the Stroke Oxygen Study Investigators and the Stroke Oxygen Study Collaborative Group

IMPORTANCE Hypoxia is common in the first few days after acute stroke, is frequently intermittent, and is often undetected. Oxygen supplementation could prevent hypoxia and secondary neurological deterioration and thus has the potential to improve recovery.

OBJECTIVE To assess whether routine prophylactic low-dose oxygen therapy was more effective than control oxygen administration in reducing death and disability at 90 days, and if so, whether oxygen given at night only, when hypoxia is most frequent, and oxygen administration is least likely to interfere with rehabilitation, was more effective than continuous supplementation.

DESIGN, SETTING, AND PARTICIPANTS In this single-blind randomized clinical trial, 8003 adults with acute stroke were enrolled from 136 participating centers in the United Kingdom within 24 hours of hospital admission if they had no clear indications for or contraindications to oxygen treatment (first patient enrolled April 24, 2008; last follow-up January 27, 2015).

INTERVENTIONS Participants were randomized 1:1:1 to continuous oxygen for 72 hours (n = 2668), nocturnal oxygen (21:00 to 07:00 hours) for 3 nights (n = 2667), or control (oxygen only if clinically indicated; n = 2668). Oxygen was given via nasal tubes at 3 L/min if baseline oxygen saturation was 93% or less and at 2 L/min if oxygen saturation was greater than 93%.

MAIN OUTCOMES AND MEASURES The primary outcome was reported using the modified Rankin Scale score (disability range, 0 [no symptoms] to 6 [death]; minimum clinically important difference, 1 point), assessed at 90 days by postal questionnaire (participant aware, assessor blinded). The modified Rankin Scale score was analyzed by ordinal logistic regression, which yields a common odds ratio (OR) for a change from one disability level to the next better (lower) level; OR greater than 1.00 indicates improvement.

RESULTS A total of 8003 patients (4398 (55%) men; mean [SD] age, 72 [13] years; median National Institutes of Health Stroke Scale score, 5; mean baseline oxygen saturation, 96.6%) were enrolled. The primary outcome was available for 7677 (96%) participants. The unadjusted OR for a better outcome (calculated via ordinal logistic regression) was 0.97 (95% CI, 0.89 to 1.05; P = .47) for oxygen vs control, and the OR was 1.03 (95% CI, 0.93 to 1.13; P = .61) for continuous vs nocturnal oxygen. No subgroup could be identified that benefited from oxygen. At least 1 serious adverse event occurred in 348 (13.0%) participants in the continuous oxygen group, 294 (11.0%) in the nocturnal group, and 322 (12.1%) in the control group. No significant harms were identified.

CONCLUSIONS AND RELEVANCE Among nonhypoxic patients with acute stroke, the prophylactic use of low-dose oxygen supplementation did not reduce death or disability at 3 months. These findings do not support low-dose oxygen in this setting.

TRIAL REGISTRATION ISRCTN Identifier: ISRCTN52416964

© 2017 American Medical Association. All rights reserved.
Hypoxia is common during the first days after an acute stroke and associated with higher rates of neurological deterioration, death and institutionalization, and greater mortality. While cells in the ischemic penumbra are only viable for a few hours, brain cells beyond the ischemic core and penumbra remain at risk of delayed cell death for several days owing to vasogenic edema, inflammation, and programmed cell death, particularly if metabolic disturbances are compounded by hypoxia. Continuous monitoring is associated with better outcomes, but even in intensively monitored patients, hypoxia is not always identified and treated. Adverse outcomes were observed to be increased when only some desaturations of less than 90% were treated with oxygen and reduced when all were treated.

Supplemental oxygen could improve outcomes by preventing hypoxia and secondary brain damage but could also have adverse effects. These include vasoconstriction and pulmonary toxicity with high concentrations, respiratory tract infection due to contamination of the nasal tubes, the tubing acting as an impediment to mobilization, stress, and the direct effects of oxygen on vascular tone and blood pressure. Oxygen supplementation during the day, or patients needing oxygen in the control group, patients in the nocturnal oxygen group during the day, or patients needing oxygen in the control group, patients in the nocturnal oxygen group.

The primary aim of the Stroke Oxygen Study (SO2S) was to determine whether low-dose oxygen therapy during the first 3 days after an acute stroke improves outcome compared with usual care (oxygen only when needed). Because oxygen may restrict mobility and interfere with daytime activities, the secondary hypothesis was that oxygen given at night only, when hypoxia is most likely, is more effective than continuous oxygen supplementation.

Methods

Study Design
This was a multicenter randomized clinical trial of oxygen supplementation with single-blind outcome assessment. The protocol and statistical analysis plan (Supplement 1 and Supplement 2) and data collection forms are published. Fully informed written or witnessed consent was given by the participants or, if they did not have capacity to consent, by a legal representative. The protocol was approved by the North Staffordshire Research Ethics Committee (06/Q2604/109).

Participants
Adults (aged ≥18 years) with a clinical diagnosis of acute stroke within 24 hours of hospital admission (136 participating centers in the United Kingdom), who had no clinical indications for or contraindications to oxygen treatment or any concomitant condition likely to limit life expectancy to less than 12 months were eligible (see eAppendix in Supplement 3 for definition of acute stroke).

Randomization and Interventions
Participants were allocated 1:1:1 via central web-based minimized randomization to (1) continuous oxygen supplementation; (2) nocturnal oxygen supplementation only; or (3) no routine oxygen. The factors for which imbalances were minimized were the Six Simple Variable prognostic index for independent survival at 6 months (cutoffs: ≤3, >3 to ≤6, >6 to ≤12, >12 to ≤24, >24), baseline oxygen saturation on air (<95%, ≥95%), and time since stroke onset (cutoffs: ≤3, >3 to ≤6, >6 to ≤12, >12 to ≤24). Stroke onset was defined as the last time well for wake-up strokes. No blocking was used. Oxygen was administered per nasal tubes either continuously (day and night) during the first 72 hours after randomization or overnight (21:00 hours to 07:00 hours) for 3 nights. Oxygen was given at a flow rate of 3 L/min if baseline saturation was 93% or below or at a flow rate of 2 L/min if baseline saturation was greater than 93%. In the control group, no routine oxygen supplementation was given.

Vital signs were observed at least 4 times per day, with any abnormal findings treated independently of trial allocation. Patients requiring oxygen in the control group, patients in the nocturnal oxygen group during the day, or patients needing changes in oxygen dosage for clinical reasons were given the appropriate concentration of oxygen irrespective of treatment group. In addition, for 4144 patients recruited in the latter half of the study, spot checks of treatment adherence were undertaken at midnight and 6 AM.

Outcomes and Blinding
Outcomes were assessed at 1 week by a member of the local research team and at 90 days via postal questionnaire. Telephone interviews were conducted with nonresponders or to clarify unclear or missing answers. The primary outcome was the modified Rankin Scale (mRS) score (disability range, 0 [no symptoms] to 6 [death]; minimum clinically important difference 1 point) assessed at 90 days. Secondary outcomes were number of participants with neurological improvement (≥4-point decrease on the National Institutes of Health Stroke Scale [NIHSS]) between randomization and day 7, the highest and lowest oxygen saturations within the first 72 hours, and mortality at 1 week. Further secondary outcomes at 90 days were mortality, number of participants alive and independent (mRS ≤2), number of participants living at home, Barthel Index.

Key Points

Question Does routine prophylactic low-dose oxygen supplementation after acute stroke improve functional outcome?

Findings In this randomized clinical trial, 8003 patients with acute stroke were randomized within 24 hours of admission to 3 days of continuous oxygen, nocturnal oxygen, or control. After 3 months, there was no significant difference in death and disability for the combined oxygen groups compared with control (odds ratio, 0.97) or for the continuous oxygen group compared with the nocturnal oxygen group (odds ratio, 1.03).

Meaning Routine low-dose oxygen did not improve outcomes in nonhypoxic patients after acute stroke.
Figure 1. Flow of Participants Enrolled in the Continuous Oxygen, Nocturnal Oxygen, and Control Groups

Activities of daily living (ADL) score,24 quality of life (EuroQol [EQ5D-3L]) score,25 and Nottingham Extended Activities of Daily Living score.26 For the NIHSS and Barthel Index, deaths were recorded as the worst outcome on the scale.27 Participants, their physicians, and local research staff who recorded the 1-week outcomes were not blind to the study interventions. Ninety-day assessments were undertaken by the SO\textsubscript{2}S study office, which was blind to treatment allocation.

Study Size

The initial recruitment target was 6000 participants, which was estimated to provide 90% power to detect small (0.2 mRS-point difference between oxygen groups) differences in oxygen saturation, and the Six Simple Variable prognostic index for 6-month mortality (or for analysis of mortality, the Six Simple Variable prognostic index for 30-day survival). Sensitivity analysis for the mRS used multiple imputation of missing values (using a chained equations method with 20 imputed data sets). Additional imputations were performed to allow for the possibility that data were missing not at random and were either better or worse than expected; missing values were replaced by either very good (ie, lowest) or very poor (ie, highest) scores on the mRS as appropriate (Table 3 in Supplement 3). Subgroups, for the mRS only, were analyzed by an interaction term and were predefined in the statistical analysis plan.17

Statistical Analysis

The trial was designed to answer 2 key questions: whether oxygen supplementation improves outcome (mRS at 90 days) and whether giving oxygen at night is more effective than giving it continuously. The main comparisons, therefore, were of the 2 combined oxygen groups (continuous and nocturnal only) vs control, and of continuous oxygen vs nocturnal-only oxygen. The statistical analysis plan describes the analysis methods in detail (Supplement 1 and Supplement 2).17 The mRS was analyzed by ordinal logistic regression, which yields a common odds ratio (OR) for a move from one level to the next better (lower) level with an OR more than 1.00 indicating an improvement. For this and other outcome variables, a primary unadjusted analysis and a secondary covariate-adjusted analysis were performed. Adjusted analyses incorporated the following covariates: age, sex, baseline NIHSS score, baseline oxygen saturation, and the Six Simple Variable prognostic index for 6-month independence (or for analysis of mortality, the Six Simple Variable prognostic index for 30-day survival). Sensitivity analysis for the mRS used multiple imputation of missing values (using a chained equations method with 20 imputed data sets). Additional imputations were performed to allow for the possibility that data were missing not at random and were either better or worse than expected; missing values were replaced by either very good (ie, lowest) or very poor (ie, highest) scores on the mRS as appropriate (Table 3 in Supplement 3). Subgroups, for the mRS only, were analyzed by an interaction term and were predefined in the statistical analysis plan.17
For continuous outcomes, means and standard deviations or medians and interquartile ranges (IQRs) are reported, as appropriate. Unadjusted analyses used unrelated t tests, with the mean difference between treatments and corresponding CIs reported. The adjusted analysis used analysis of covariance, with the covariates specified earlier included in the analysis. For dichotomous outcomes, percentages were compared across the treatment comparisons using a χ² test (unadjusted analyses). Adjusted analyses of dichotomous outcomes used binary logistic regression, with the covariates listed earlier; ORs and CIs are reported.

All analyses were by intention to treat, ie, according to the treatment group to which participants were allocated, irrespective of treatment actually received. Statistical significance was set at a P value of less than or equal to .05 with 95% CIs for the primary outcome and at a P value of less than or equal to .01 with 99% CIs for secondary outcomes. All reported P values are 2-sided. The main analysis was performed in SAS software for Windows, version 9.4 (SAS Institute Inc), and IBM SPSS for Windows, version 22 was used for sensitivity analyses.

Interim analyses of safety and effectiveness were reviewed annually by an independent data monitoring and safety committee. No α-spending adjustments were made.

Results

Participants

A total of 8003 participants from 136 collaborating centers in the United Kingdom were randomized and followed up between April 24, 2008, and January 27, 2015, (Figure 1). Baseline demographic and clinical characteristics, including stroke severity and oxygen saturation at randomization, were well-balanced in the groups.
Table 2. Secondary, Exploratory, and Safety Outcomes

<table>
<thead>
<tr>
<th>Secondary Outcomes at 72 h</th>
<th>No. (N = 8003)</th>
<th>Continuous Oxygen (n = 2668)</th>
<th>Nocturnal Oxygen (n = 2667)</th>
<th>Control (n = 2668)</th>
<th>Comparison 1</th>
<th>Comparison 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest oxygen saturation, mean (99% CI), %</td>
<td>7860</td>
<td>99.1 (99.1 to 99.2)</td>
<td>98.8 (98.7 to 98.9)</td>
<td>98.3 (98.2 to 98.3)</td>
<td>MD, 0.69 (0.61 to 0.77)</td>
<td><.001 b</td>
</tr>
<tr>
<td>Lowest oxygen saturation, mean (99% CI), %</td>
<td>7860</td>
<td>95.0 (94.9 to 95.1)</td>
<td>94.5 (94.4 to 94.6)</td>
<td>94.1 (94.0 to 94.2)</td>
<td>MD, 0.62 (0.48 to 0.76)</td>
<td><.001 b</td>
</tr>
<tr>
<td>Oxygen saturation <90%, No. (%)</td>
<td>7860</td>
<td>39 (1.5)</td>
<td>30 (1.1)</td>
<td>74 (2.8)</td>
<td>OR, 0.46 (0.30 to 0.71)</td>
<td><.001 b</td>
</tr>
<tr>
<td>Oxygen saturation <95%, No. (%)</td>
<td>7860</td>
<td>861 (32.9)</td>
<td>1119 (42.9)</td>
<td>1354 (51.5)</td>
<td>OR, 0.57 (0.51 to 0.65)</td>
<td><.001 b</td>
</tr>
<tr>
<td>Need for additional oxygen, No. (%)</td>
<td>7809</td>
<td>254 (9.8)</td>
<td>209 (8.1)</td>
<td>176 (6.7)</td>
<td>OR, 1.36 (1.07 to 1.73)</td>
<td><.001 b</td>
</tr>
<tr>
<td>Secondary Outcomes at 7 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIHSS, median (99% CI)</td>
<td>7778</td>
<td>2 (2 to 3)</td>
<td>2 (2 to 3)</td>
<td>2 (2 to 3)</td>
<td>MD, 0 (0 to 0)</td>
<td>.56 f</td>
</tr>
<tr>
<td>Neurological improvement, No. (%)</td>
<td>7778</td>
<td>1016 (39.2)</td>
<td>1029 (39.7)</td>
<td>1037 (39.9)</td>
<td>OR, 0.98 (0.86 to 1.11)</td>
<td>.68 d</td>
</tr>
<tr>
<td>Death by 7 d, No. (%)</td>
<td>7959</td>
<td>50 (1.9)</td>
<td>35 (1.3)</td>
<td>45 (1.7)</td>
<td>OR, 0.95 (0.59 to 1.53)</td>
<td><.001 b</td>
</tr>
<tr>
<td>Secondary Outcomes at 90 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death by 90 d, No. (%)</td>
<td>7677</td>
<td>257 (10.0)</td>
<td>236 (9.2)</td>
<td>246 (9.7)</td>
<td>OR, 1.00 (0.81 to 1.23)</td>
<td>.96 d</td>
</tr>
<tr>
<td>Alive and independent, No. (%)</td>
<td>7677</td>
<td>1325 (51.6)</td>
<td>1316 (51.4)</td>
<td>1337 (52.5)</td>
<td>OR, 0.96 (0.85 to 1.09)</td>
<td>.43 d</td>
</tr>
<tr>
<td>Living at home, No. (%)</td>
<td>6859</td>
<td>1961 (85.8)</td>
<td>1947 (84.8)</td>
<td>1947 (85.4)</td>
<td>OR, 0.99 (0.82 to 1.02)</td>
<td>.91 d</td>
</tr>
<tr>
<td>Barthel ADL index, mean (99% CI)</td>
<td>7528</td>
<td>9.66 (9.38 to 9.93)</td>
<td>9.54 (9.26 to 9.81)</td>
<td>9.77 (9.49 to 10.05)</td>
<td>MD, −0.17 (−0.62 to 0.28)</td>
<td>.32 a</td>
</tr>
<tr>
<td>Nottingham Extended ADL, mean (99% CI)</td>
<td>7248</td>
<td>0.50 (0.48 to 0.51)</td>
<td>0.50 (0.48 to 0.51)</td>
<td>0.50 (0.48 to 0.51)</td>
<td>MD, 0.004 (−0.02 to 0.03)</td>
<td>.71 a</td>
</tr>
<tr>
<td>EQ5D-3L for quality of life, mean (99% CI)</td>
<td>6549</td>
<td>55.2 (54.2 to 56.7)</td>
<td>55.1 (54.2 to 56.7)</td>
<td>55.2 (54.2 to 56.7)</td>
<td>MD, −0.01 (−0.03 to 0.01)</td>
<td>.71 a</td>
</tr>
<tr>
<td>VAS for quality of life, mean (99% CI)</td>
<td>6675</td>
<td>55.4 (54.2 to 56.7)</td>
<td>55.4 (54.2 to 56.7)</td>
<td>55.4 (54.2 to 56.7)</td>
<td>MD, −0.01 (−0.03 to 0.01)</td>
<td>.71 a</td>
</tr>
</tbody>
</table>

Exploratory Outcomes

Highest heart rate within 72 h, mean (99% CI), beats/min	7859	87.2 (86.3 to 88.0)	88.0 (87.2 to 88.8)	87.7 (86.9 to 88.4)	MD, −0.07 (−1.06 to 0.92)	.92 a	MD, −0.83 (−2.01 to 0.35)	.35 a
Highest systolic BP within 72 h, mean (99% CI), mm Hg	7864	162.4 (161.2 to 163.7)	162.8 (161.5 to 164.0)	164.6 (163.3 to 165.8)	MD, −1.96 (−3.48 to 0.44)	.35 b	MD, −0.35 (−2.11 to 1.41)	.22 a
Highest diastolic BP within 72 h, mean (99% CI), mm Hg	7861	89.5 (88.7 to 90.2)	90.2 (89.4 to 91.0)	90.9 (90.1 to 91.7)	MD, −1.10 (−2.06 to 0.15)	.72 a	MD, −0.72 (−1.82 to 0.37)	.22 b
Highest temperature within 7 d, mean (99% CI), °C	7877	37.1 (37.1 to 37.2)	37.2 (37.1 to 37.2)	37.1 (37.1 to 37.2)	MD, −0.01 (−0.03 to 0.04)	.92 a	MD, −0.01 (−0.05 to 0.03)	.92 b
Antibiotics given within 7 d, No. (%)	7916	393 (14.9)	403 (15.2)	403 (15.2)	OR, 0.99 (0.83 to 1.17)	.78 c	OR, 1.02 (0.84 to 1.24)	.84 b
Sedatives given within 7 d, No. (%)	7916	140 (5.3)	141 (5.3)	141 (5.3)	OR, 0.98 (0.76 to 1.28)	.37 a	OR, 0.86 (0.63 to 1.17)	.33 b
Sleep as good as before the stroke, No. (%)	6716	1937 (87)	1957 (87)	1937 (87)	OR, 1.09 (0.89 to 1.32)	.28 a	OR, 1.06 (0.84 to 1.34)	.16 b
Memory as good as before the stroke, No. (%)	6716	1957 (88)	1957 (88)	1957 (88)	OR, 1.09 (0.89 to 1.32)	.28 a	OR, 1.06 (0.84 to 1.34)	.16 b
Secondary, Exploratory, and Safety Outcomes (continued)

Table 2

<table>
<thead>
<tr>
<th>Comparison 1</th>
<th>Comparison 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen Supplementation After Acute Stroke</td>
<td>Combined Oxygen vs Control, Continuous vs Nocturnal, Nocturnal Oxygen vs Control</td>
</tr>
<tr>
<td>No.</td>
<td>Continuous Oxygen</td>
</tr>
<tr>
<td>P Value (99% CI)</td>
<td>P Value (99% CI)</td>
</tr>
</tbody>
</table>

Safety Outcomes

- **Serious adverse events, mean (99% CI)**: Continuous Oxygen = 0.16 (0.14 to 0.18), Nocturnal Oxygen = 0.13 (0.11 to 0.16), Control = 0.16 (0.13 to 0.18). RR, 0.94 (0.82 to 1.08) (p = 0.37). OR, 1.19 (1.01 to 1.40) (p = 0.03).

- **Participants with ≥1 serious adverse event, No. (%)**: Continuous Oxygen = 322 (12.1), Nocturnal Oxygen = 294 (11.0), Control = 348 (13.0). OR, 1.00 (0.83 to 1.20) (p = 0.96). OR, 1.21 (0.97 to 1.51) (p = 0.02).

Neurological improvement was indicated by a decrease of 4 or more points on the NIHSS.

Abbreviations: ADL, activities of daily living; EQ5D-3L, EuroQol quality of life measure of health outcome; MD, mean difference; MdD, median difference; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; RR, rate ratio; VAS, Visual Analog Scale.

Treatment Adherence

Adherence was similar in the continuous oxygen group (2158 [81%]) and the nocturnal oxygen group (2225 [83%]), all of whom were prescribed the full course of treatment (Table 2 in Supplement 3). Use of oxygen was discontinued prematurely among 433 (16%) participants in the continuous oxygen group and 361 (14%) in the nocturnal oxygen group. The most common reason for early discontinuation of oxygen was discharge from the hospital. In the control group, trial oxygen was recorded as being given to 33 (1.2%) participants, with no recording of whether oxygen was given among 406 (15%).

Effect on Oxygenation

Oxygen treatment resulted in a significant increase of 0.8% in the highest oxygen saturation and 0.9% in the lowest oxygen saturation during the 72 hours of the intervention period in the continuous oxygen group compared with controls, and of 0.5% in the highest oxygen saturation and 0.4% in the lowest oxygen saturation during the 72 hours of the intervention period in the nocturnal oxygen group compared with controls (P < .001 for all comparisons; Table 2). Significantly more participants in the combined oxygen groups (n = 463 [9%]) required oxygen for clinical reasons during the intervention period than in the control group (n = 176 [7%]) (P < .001). Similarly, more participants in the continuous oxygen group (n = 254 [10%]) required oxygen than in the nocturnal oxygen group (n = 209 [8%]); P = .03.

Main Outcome

The primary analysis demonstrated that oxygen supplementation did not significantly improve functional outcome at 90 days (Figure 2). The unadjusted OR for a better outcome (lower mRS) was 0.97 (95% CI, 0.89 to 1.05; P = .47) for combined oxygen vs control, and 1.03 (95% CI, 0.93 to 1.13; P = .61) for continuous oxygen vs nocturnal oxygen. Secondary analyses adjusted for
Figure 2. Main Outcome Assessed by Modified Rankin Scale Score at 90-Day Follow-up

A Combined oxygen vs control

<table>
<thead>
<tr>
<th>No. of Patients</th>
<th>Modified Rankin Scale Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined oxygen group 5128</td>
<td>605 1399 637 883 795 316 493</td>
</tr>
<tr>
<td>Control group 2549</td>
<td>336 671 330 415 395 156 246</td>
</tr>
</tbody>
</table>

B Continuous oxygen vs nocturnal oxygen

<table>
<thead>
<tr>
<th>No. of Patients</th>
<th>Percentage of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous oxygen 2567</td>
<td>313 690 322 461 376 148 257</td>
</tr>
<tr>
<td>Nocturnal oxygen 2561</td>
<td>292 709 315 422 419 168 236</td>
</tr>
</tbody>
</table>

From the ordinal regression analysis, the unadjusted odds ratio for a better outcome (lower modified Rankin Scale [mRS] score) was 0.97 (95% CI, 0.93 to 1.01; P = .47) for combined oxygen vs control, and 1.03 (95% CI, 0.93 to 1.13; P = .30) for continuous oxygen vs nightly oxygen (mRS score range, 0 to 6 [0, no symptoms; 1, few symptoms but able to carry out all previous activities and duties; 2, unable to carry out all previous activities but able to look after own affairs without assistance; 3, needs some help with looking after own affairs but able to walk without assistance; 4, unable to walk without assistance and unable to attend to own bodily needs without assistance but does not need constant care and attention; 5, major symptoms such as bedridden and incontinent and needs constant attention day and night; 6, death]).

Safety Outcomes

The number of serious adverse events by 90 days was similar in the combined oxygen and control groups, but lower in the nocturnal oxygen group when compared with the continuous oxygen group (Table 2; eTable 5 in Supplement 3). No oxygen-related adverse events (respiratory depression, drying of mucous membranes) were reported.

Discussion

In this clinical trial of patients with acute stroke, routine prophylactic low-dose oxygen supplementation did not improve outcome among patients who were not hypoxic at baseline, whether oxygen was given continuously for 72 hours or at night only. This applied to the primary 90-day functional outcome and to all other tested outcomes, including early neurological recovery, mortality, disability, independence in basic and extended activities of daily living, and quality of life. The results remained unchanged in analyses adjusted for baseline prognostic factors and in sensitivity analyses using multiple imputation or analyzing only participants who adhered to protocol (eTable 3 in Supplement 3).

Exploratory Analyses

There was no evidence of increased stress levels (higher heart rates, higher blood pressure, and need for sedation) in the oxygen-treated group than in the control group or evidence that oxygen treatment was associated with more infections, with little difference in the highest temperature or the need for antibiotics (Table 2).
In contrast to the much smaller SOS Pilot study,15 this trial showed no evidence of better early neurological recovery with oxygen. Subgroup analysis of an earlier study of low-dose oxygen supplementation in acute stroke14 suggested that oxygen might adversely affect outcome in patients with mild strokes, possibly through formation of toxic free radicals. A more recent study of short-burst high-flow oxygen (45 L/min) was terminated early (after enrollment of 85 patients) because of excess mortality in the actively treated group.13 Hyperoxia was independently associated with mortality in a large retrospec-
pragmatic trials \cite{32,33} but has been replaced by remote multiple-rater video-recorded interviews or in-person interview and examination by an allocation-blinded rater using formal structured assessments in several more recent studies. \cite{34} Low-dose oxygen supplementation may not be sufficient to prevent severe desaturations; both the SOS Pilot \cite{15} and this trial found no significant difference in severe desaturations between the treatment and control groups. A small (N = 46) nonrandomized study comparing high-flow oxygen treatment via mask with low-flow supplementation via nasal cannula showed a trend toward lower mortality with high flow that was not statistically significant. However, evidence from randomized trials of high-flow oxygen treatment in acute stroke \cite{11-13} does not show that higher doses of oxygen are associated with better outcomes. Early administration of high-dose oxygen might help maintain the viability of the ischemic penumbra and allow a broader time window for neuroprotection or thrombolysis. This question was not addressed in this trial of prophylactic oxygen, but will be tested in the PROOF trial. \cite{35}

The median time from stroke onset to randomization in this trial was 20 hours, 43 minutes. However, 101 participants were enrolled early (within 3 hours of symptom onset). Subgroup analysis (Figure 3) showed a similar lack of effect for oxygen in the small subset of patients enrolled early as in those enrolled later but was underpowered. Larger trials in the early time window would be needed to definitely exclude a benefit.

Conclusions

Among nonhypoxic patients with acute stroke, the prophylactic use of low-dose oxygen supplementation did not reduce death or disability at 3 months. These findings do not support low-dose oxygen in this setting.

Cutoff for mortality differs from the 90-day mortality reported in Table 2 and Figure 2, in which responses were accepted up to 6 months if 3-month outcomes were not returned. Median duration of follow-up was 90 days (range, 0 to 90) in each treatment group.

This study has several limitations. Minor benefits from oxygen treatment might have been masked by poor adherence. However, this seems unlikely given the high statistical power to detect even small improvements. Moreover, sensitivity analyses did not show better outcomes in the adherers-only group (eTable 3 in Supplement 3). Furthermore, this trial found significant increases in the oxygen saturations in the treated groups compared with the control group. Patients with acute stroke are often restless and confused. Ensuring full adherence would ideally require a 1 to 1 nurse-to-patient ratio. However, this is not possible outside an intensive care setting. The main outcome was assessed by postal questionnaire and supported by telephone interviews with nonresponders. This method has been used successfully in large pragmatic trials \cite{32,33} but has been replaced by remote multiple-rater video-recorded interviews or in-person interview and examination by an allocation-blinded rater using formal structured assessments in several more recent studies. \cite{34} Low-dose oxygen supplementation may not be sufficient to prevent severe desaturations; both the SOS Pilot \cite{15} and this trial found no significant difference in severe desaturations between the treatment and control groups. A small (N = 46) nonrandomized study comparing high-flow oxygen treatment via mask with low-flow supplementation via nasal cannula showed a trend toward lower mortality with high flow that was not statistically significant. However, evidence from randomized trials of high-flow oxygen treatment in acute stroke \cite{11-13} does not show that higher doses of oxygen are associated with better outcomes. Early administration of high-dose oxygen might help maintain the viability of the ischemic penumbra and allow a broader time window for neuroprotection or thrombolysis. This question was not addressed in this trial of prophylactic oxygen, but will be tested in the PROOF trial. \cite{35}

The median time from stroke onset to randomization in this trial was 20 hours, 43 minutes. However, 101 participants were enrolled early (within 3 hours of symptom onset). Subgroup analysis (Figure 3) showed a similar lack of effect for oxygen in the small subset of patients enrolled early as in those enrolled later but was underpowered. Larger trials in the early time window would be needed to definitely exclude a benefit.

Conclusions

Among nonhypoxic patients with acute stroke, the prophylactic use of low-dose oxygen supplementation did not reduce death or disability at 3 months. These findings do not support low-dose oxygen in this setting.

Cutoff for mortality differs from the 90-day mortality reported in Table 2 and Figure 2, in which responses were accepted up to 6 months if 3-month outcomes were not returned. Median duration of follow-up was 90 days (range, 0 to 90) in each treatment group.

This study has several limitations. Minor benefits from oxygen treatment might have been masked by poor adherence. However, this seems unlikely given the high statistical power to detect even small improvements. Moreover, sensitivity analyses did not show better outcomes in the adherers-only group (eTable 3 in Supplement 3). Furthermore, this trial found significant increases in the oxygen saturations in the treated groups compared with the control group. Patients with acute stroke are often restless and confused. Ensuring full adherence would ideally require a 1 to 1 nurse-to-patient ratio. However, this is not possible outside an intensive care setting. The main outcome was assessed by postal questionnaire and supported by telephone interviews with nonresponders. This method has been used successfully in large pragmatic trials \cite{32,33} but has been replaced by remote multiple-rater video-recorded interviews or in-person interview and examination by an allocation-blinded rater using formal structured assessments in several more recent studies. \cite{34} Low-dose oxygen supplementation may not be sufficient to prevent severe desaturations; both the SOS Pilot \cite{15} and this trial found no significant difference in severe desaturations between the treatment and control groups. A small (N = 46) nonrandomized study comparing high-flow oxygen treatment via mask with low-flow supplementation via nasal cannula showed a trend toward lower mortality with high flow that was not statistically significant. However, evidence from randomized trials of high-flow oxygen treatment in acute stroke \cite{11-13} does not show that higher doses of oxygen are associated with better outcomes. Early administration of high-dose oxygen might help maintain the viability of the ischemic penumbra and allow a broader time window for neuroprotection or thrombolysis. This question was not addressed in this trial of prophylactic oxygen, but will be tested in the PROOF trial. \cite{35}

The median time from stroke onset to randomization in this trial was 20 hours, 43 minutes. However, 101 participants were enrolled early (within 3 hours of symptom onset). Subgroup analysis (Figure 3) showed a similar lack of effect for oxygen in the small subset of patients enrolled early as in those enrolled later but was underpowered. Larger trials in the early time window would be needed to definitely exclude a benefit.

Conclusions

Among nonhypoxic patients with acute stroke, the prophylactic use of low-dose oxygen supplementation did not reduce death or disability at 3 months. These findings do not support low-dose oxygen in this setting.
ARTICLE INFORMATION

Accepted for Publication: August 12, 2017.

Author Affiliations: University Hospital of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom (Roffe, Ferdinand); Faculty of Medicine and Health Sciences, Keele University, Staffordshire, United Kingdom (Roffe, Nevatte, Tel); Directorate for Engagement & Partnerships, Keele University, Staffordshire, United Kingdom (Nevatte, Roffe); Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom (Ives, Gray); MRC Population Health Research Unit, University of Oxford, Oxford, United Kingdom (Gray).

Author Contributions: Drs Roffe and Bishop had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Roffe, Gray.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Roffe, Ives, Ferdinand, Gray.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Simon, Ives, Gray.

Obtained funding: Roffe, Ferdinand, Gray.

All authors.

Supervision: Roffe, Ives, Gray.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Roffe reports receipt of a grant from the Research for Patient Benefit Programme and the Health Technology Assessment Programme of the National Institute for Health Research (NIHR), receipt of lecture and travel fees from Air Liquide, and independent membership on the data safety and monitoring committee of the PROOF trial. No other disclosures were reported.

Funder/Sponsor: This project was funded by the NIHR Health Technology Assessment Programme (project number 10/04/21) and the Research for Patient Benefit Programme.

Role of the Funder/Sponsor: The NIHR had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the Health Technology Assessment, NIHR, the National Health Service (NHS), or the Department of Health. The Stroke Oxygen Study (SO2S) was sponsored by North Staffordshire Combined Healthcare NHS Trust.

Participating Centers and SO2S Collaborative Group members (astereisks indicate principal investigator[s]); numeric values indicate the number of participants enrolled:

Royal Stoke University Hospital, Stoke-on-Trent: K Finney, S Gomm, J Lucas, H Maguire, C Roffe (478); St George's Hospital, London: I Jones, L Montague, B Moynihan*, J O'Reilly, C Watchutt (288); The Royal Liverpool University Hospital, Liverpool: P Cox, G Fletcher, A Ledger, S Lohuraka, *L Plope, A Manoj (257); Royal Bournemouth General Hospital, Bournemouth: O David, D Jepson*, J Kwan, E Rogers, E Wood (240); Kings College Hospital, London: A Davis, L Kala*, E Khormana, R Lewis, H Trainer (231); Leeds General Infirmary, Leeds: K Mambafwile, L Malva, E Varea, P Wanklyn*, D Waugh (204); Salford Royal Hospital, Salford: E Campbell, J Hardere, V Loughlin, C Packman*, T Whitty (102); Southend Hospital, Southend: P Guylver*, P Harman, A Kumar Kundra, D Sinha, S Tyne (188); Countess of Chester Hospital, Chester: S Booth, K Chatterjee*, H Eccleston, C Kelly, S Leeson (176); The Royal Victoria Infirmary, Newcastle upon Tyne: A Barkat, J Davis, A Doxt*, M Fawcett, V Hogg (168); Royal Sussex County Hospital, Brighton: K AA*, J Beets, J Gaylard, J Knight, G Spurling (164); Musgrove Park Hospital, Taunton: S Brown, L Caudwell, L Dunningham, J Foot, M Hussain* (156); Bristol Royal Infirmary, Bristol: J Chambers, P Murphy*, M Osborn, A Steele (151); Royal Preston Hospital, Preston: S Dubery, C Gilmour, B Gregory, S Punaika*, R Raj (148); University Hospital Aintree, Liverpool: A Jethorn, R Durairaj*, T Fluskey, Z Mellor, V Sutton (148); Birmingham Heartlands Hospital, Birmingham: P Carr, J McCormack, D Sandler*, C Stretton, K Warren (143); Pennine Acute Hospital, Rochdale: L Harrison, L Johnson, R Namush*, N Narayan, N Thomas (133); Queen's Hospital, Romford: J Birch, R Daman, B Mukherjee* (131); University Hospital Coventry, Warwick: L Aldridge, P Kanti Ray*, S Nyabadza, C Randall, H Wright (129); Worsbeck Hospital, Northumberland: C Ashbrook-Ray, A Barkat, R Laikey, C Price*, G Storey (124); Royal Devon and Exeter Hospital, Exeter: L Farr, J Baron, A Bowring, H Ewood, M Jones*, K Stiven (113); Royal United Hospital, Bath: J Avis, D Button, M Hope, B Madigan, L Shaw* (113); Royal Cornwall Hospital, Truro: K Adie, G Courtauld, F Harrington, S Cholfield (112); Queen Elizabeth the Queen Mother Hospital, Margate: S Jones, G Thomas (105); York Hospital, York: J Joyce*, N Dyer, S Howard, M Keeling, S Williamson (105); University Hospital of North Durham, Durham: E Brown, S Bruce, B Eissi*, R Hyman, E Roberts (99); Derriford Hospital, Plymouth: C Bailey, B Byams, A Mohd Nor*, N Persad (96); Selly Oak Hospital (Acute), Birmingham: J Hurley, E Linehan, J McCormack, J Savanhu, D Sims* (92); Whiston Hospital, Prescot: R Brown, S Dealing, V Goward* (89); Torbay District General Hospital, Torbay: C Bailey, P Fletzil, C Haire, D Kelly*, S Szabo (87); Charing Cross Hospital, London: E Bevan, J Gorcia, T Push-Pajra, T Sach, J Smith, V Tille (M37); Hospital, Crewe: N Gautham, C Matyi*, R Miller, C Mustill, M Salehin*, A Walker (87); Kent & Canterbury Hospital, Canterbury: H Baht, I Burger*, L Cowie, T Irani, A Thomson (84); New Cross Hospital, Wolverhampton: P Bourke, K Forberth*, D Morgan, K Preece (84); Northwick Park Hospital, Harrow: L Burgess, D Cohen*, M Mpelembu (83); Barnsley District General Hospital, Barnsley: M Abazazzzi*, R Bass, C Dennis, K Hawley, S Johnson-Holland (82); Blackpool Victoria Hospital, Blackpool: H Goddard, J Howard, C Jeffs, J McInmoy*, A Strain (82); North Tyneside General Hospital, North Shields: J Dickison, K Mitchelson, C Price*, V Riddell, A Smith (79); Eastbourne District General Hospital, Eastbourne: C Athulathmudali*, E Barbon (76); Warrington Hospital, Warrington: K Bunworth, L Connell, G Delaney-Sagar, K Mahawish*, O Okoli*, H Whittle (75); Princess Royal Hospital, Haywards Heath: R Campbell*, A Nyarko (70); City Hospitals, Sunderland: S Crawford, C Gray*, D Gulliver, R Laikey, N Majumdar*, S Rutter (69); William Harvey Hospital, Ashford: L Cowie, D Hargroves*, T Webb (69); Stepping Hill Hospital, Stockport: A Brown, R Goad, B Hurdowar, K Javad*, P Preece (54); Bradford Royal Infirmary, Bradford: R Belfield, B Hairline, L Johnston, C Patterson*, S Williamson (53); Luton & Dunstable Hospital, Luton: F Justin, S Sethuraman*, L Tate (50); Royal Blackburn Hospital, Blackburn: A Bell, M Goora, N Goorah*, A Sangster (50); University College Hospital, London: N Bhupathiraju, L Latter, P Rayson, R Simister*, R Udai Erande (50); Addenbrooke's Hospital, Cambridge: N Butler, D Day, E Jumilla, J Mitchell, E Warburton* (48); Queen Alexandria Hospital, Portsmouth: T Dodson, C Edwards, J Hewitt*, L Hyatt, D Jarret* (47); North Devon District Hospital, Bideford: P Belcher, M Dent*, F Hammond, J Hunt, C Vernon (45); Solihull Hospital, Solihull: A Carter, K Elford*, S Stafford (45); Pilgrim Hospital, Boston: A Hardwick, D Mangion*, S Marvosa* (44); Norfolk & Norwich University Hospital, Norwich: J Jagger, P Myint*, G Ravenhill, N Shrink*, E Thomas, N Wyatt (41); Gloucestershire Royal Hospital, Gloucester: P Brown, F Davis, D Dutta*, J Turfrey, D Ward (40); Royal Surrey County Hospital, Guildford: O Balazikova, A Bliht*, C Lawlor, K Pasco (39); Southport & Formby District General Hospital, Southport: M Marshall, P McConalda*, H Terrett (39); Bishop Auckland General Hospital, Bishop Auckland, Durham: E Brown, A Mehraiz* (35); Airedale General Hospital, Leeds: A Borkowski, J Cullen, A Huliani, M Metcalfe*, S Mendez*, A Muddin*, D O'sullivan* (34); Bradford Royal Infirmary, Bradford: P Belfield, B Hairline, S Musa*, M Smith*, S Williamson (34); Calderdale Royal Hospital, Halifax: C Button, J Greig, B Hairine, A Nair, P Rana*, I Shakar* (34); Doncaster Royal Infirmary, Doncaster: P Anderson, D Cadha*, L Hofford, D Walton (34); East Surrey Hospital, Redhill: Y Abousleiman*, S Collins, A Jolly, B Mears* (34); Medway Maritime Hospital, Gillingham: P Akhurst, B Bourne, S Burrows, S Sunmuganathan*, S Thompson (34); Royal Derby Hospital, Derby: T England*, A Hedstrom*, M Mangoya, M Morris*, L Mills, K Muhardin*, W Wynter (33); Hobson General Hospital, Hayburn: A Benford, M Burn*, A Misra, S Pascall* (33); The Princess Royal Hospital, Telford: R Campbell,
Oxygen Supplementation After Acute Stroke

REFERENCES

32. IST-3 Collaborative Group. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]). Lancet. 2012;379(9834):2352-2363.
