Pre-hospital spinal immobilisation: an initial consensus statement

D Connor, I Greaves, K Porter, M Bloch, On behalf of the consensus group, Faculty of Pre-Hospital Care

INTRODUCTION
Spinal injuries are thankfully relatively uncommon but have the potential to cause very significant morbidity and mortality. It is reported that between 0.5% and 3% of patients presenting with blunt trauma suffer spinal cord injury (SCI). The incidence varies globally and time has yielded increased numbers of injuries annually. American figures estimate an incidence in the region of 40 cases per million per year.3 In the UK, the majority of traumatic SCI are attributable to land transport (50%), followed by falls (43%), then sport (7%).4 Of those fractures causing SCI, half involve fractures of the cervical spine, with 37% due to thoracic spine injury and 11% due to lumbar spine injury. Of the C-spine, 50% occur at the C6/7 junction and a third at C2.5 Data show a crossover rate in the region of 10%–15% of patients with a confirmed cervical fracture also having a thoracolumbar fracture.6 It is well recognised that immobilisation is not without harm but the ‘number needed to treat’ in order to include one actual injury is high.

SCI occurs when unstable spinal fractures (only diagnosed by imaging in hospital) cause direct mechanical damage as a result of traction and compression, following which ischaemia and cord swelling ensues. Unstable fractures are those where there is disruption of two or three vertebral columns. The anterior column is formed by the anterior longitudinal ligament and the anterior half of the vertebral body, disc and annulus, the middle column by the posterior half of the vertebral body, disc and annulus and the posterior longitudinal ligament and the posterior column by the facet joints, ligamentum flavum, the posterior elements and the interconnecting ligaments.

Immobilisation is based on the logical premise that preventing movement should decrease the incidence of SCI or further deterioration of existing damage. This is undertaken by, in effect, adding external supports to the body, preventing secondary injury during extrication, resuscitation, transport and evaluation.

Immobilisation is a routinely performed procedure in the prehospital environment. Its potentially serious adverse sequelae and the litigious nature of modern medicine have seen the development of an extraordinarily conservative approach to immobilisation where it is applied in many cases in which neither the mechanism of injury nor the clinical findings would support its use.

Methods vary and research has drawn together consensus opinion on immobilisation techniques. Common practice involves the use of a rigid cervical collar, head blocks with straps or tapes and a long board with straps. A number of organisations use the orthopaedic scoop stretcher or Kendrick Extrication Device. The scoop stretcher is of value in reducing the amount of handling to which victims of trauma are subjected and the Faculty of Pre-Hospital Care is shortly to issue consensus guidance regarding minimal handling protocols in trauma. The vacuum mattress is indicated in prolonged transport to minimise the risks explained below. A pelvic sling should therefore be placed in the correct position in the vacuum mattress and the patient transferred in the scoop onto the mattress and the pelvic binder fastened appropriately. Once on a vacuum mattress, the scoop can be removed in such prolonged transfers.

SEARCH STRATEGY
Prior to the Faculty meeting in March 2012, a review of the published literature was undertaken using PubMed to search the Medline database. Secondary searches were made using UK PubMed Central and Google Scholar. The search terms included prehospital, out-of-hospital, spinal immobilisation, cervical collar and c-spine clearance. A tertiary search analysed the references of retrieved articles to identify further sources.

THE DEBATE
Immobilisation is a key concept in most trauma guidelines. The ATLS course recommends that all trauma patients considered to be at potential risk of spinal injury have immediate neck immobilisation.7 This guidance is founded upon expert opinion rather than definitive evidence and current protocols have a strong historical rather than scientific precedent. In the practice’s favour, Reid in 1987 reported that secondary neurological injury occurred in 1.4% of patients with spinal injury diagnosed in the ED whereas the secondary neurological injury rate was 10.5% in those in whom a diagnosis of spinal injury was missed.8

However, a full review undertaken by Kwan and colleagues concluded that there is no high-level evidence quantifying the effect of immobilisation versus no immobilisation on adverse effects.9 They commented that the low prevalence of SCI would mean 50–100 patients would need to be immobilised for every patient at risk of SCI. Opinions are increasingly being expressed that the practice is overused and needs review since the procedure itself is not benign. It is uncomfortable; takes time and delays initiation of specialist treatment in time-critical patients; raises intracranial pressure; increases aspiration risk and the risk of decubitus ulceration; and also potentially reduces airway opening and respiratory efficacy.9 Indeed, the latter two risks refute an axiom of prehospital care where airway maintenance takes precedence over other considerations. Kwan concludes her review by stating that, “...the possibility that immobilisation may increase mortality and morbidity cannot be excluded.”

Hauswald’s biomechanics have been published several times.10 11 His group surmises that injury is done at the time of impact by forces of greater magnitude than those encountered in subsequent movement, which is generally not sufficient to cause further damage. They comment that the alert patient will develop a position of comfort with muscle spasm protecting a damaged spine. A 2009 review also concluded that the alert, cooperative patient does not require immobilisation even if a clinical decision rule is positive, unless their conscious level deteriorates.12 They state that muscle spasm is a superior method to an artificial procedure. The College of Emergency Medicine guidance emphasises the need for large-scale studies13 while acknowledging...
the ethical conundrum that, “the current practice...is so widely adopted and the consequences of causing or exacerbating a spinal injury so catastrophic that such trials may not be supported.”

SELECTIVE IMMOBILISATION

Practice is shifting from blanket immobilisation to a selective approach. The question posed is whether guidelines can safely identify those with a spinal fracture or SCI. Whether selective immobilisation differs from prehospital clearance is undecided. At times the terms appear synonymous. However, an algorithm-based decision rule must only have the sensitivity to identify all occult fractures. Clearance requires a high degree of specificity that is not required when ruling-in immobilisation.

Emergency department (ED) management of spinal patients has changed over the past 10 years with the incorporation of level one evidence into x-ray procedures. There are two validated decision rules with near 100% sensitivity for significant SCI. The NEXUS rules14 identified five low-risk criteria which, if met, could exclude injury:
- No midline tenderness
- No focal neurological deficit
- Normal alertness
- No intoxication
- No painful distracting injury

The Canadian C-Spine Rule (CCSR) uses low-risk and high-risk factors15:
- First, is any high-risk factor present (age greater than 65, paraesthesia, significant mechanism?)
- Second, is there any low-risk factor that allows safe assessment of range of motion? (Simple rear-end collision, sitting position in the ED, ambulatory at any time, delayed onset of pain, absence of spinal tenderness)
- Last, can the patient actively rotate their neck through 45°?

NICE guidance favoured the CCSR but chose to combine the two rules adding midline tenderness to increase sensitivity.16 However, while this may appear logical, it invalidates the evidence base developed for each system and a paper comparing the two came out firmly in favour of CCSR.17

Validation of the CCSR in the prehospital setting has been undertaken and its reliability proven. Qualitative studies have shown that paramedics are comfortable using it.18

Other rules exist. American EMS physicians’ algorithm indications include patients with a mechanism suggestive of clinical risk and at least one of the following: an altered mental status, evidence of intoxication, distracting painful injury, neurological deficit or spinal tenderness.19

Mechanism of injury is commonly used as being a predictor of injury and is component of the CCSR, despite being excluded from the NEXUS guidance. The American College of Neurological Surgeons emphasises it as the main factor mandating immobilisation over examination in the prehospital setting.20 Refuting this, other series show no link between mechanism and outcome.21

JRCALC guidance suggests that all patients should be initially immobilised if the mechanism of injury is suggestive of SCI.22 The guidance gives a list of criteria which, if absent, allow removal of immobilisation. The recent 2011 update stresses that suspicion of thoracic and lumbar injury despite a ‘cleared’ C-spine warrants full immobilisation. The current lack of a clear consensus potentiates the risk of litigation, as no matter which guideline is used, expert witnesses will be found who will argue against it.

CONSENSUS OUTCOMES

The consensus meeting held by the Faculty of Pre-hospital Care aimed to clarify the practice of immobilisation. Preliminary discussions highlighted salient points that required discussion. The conclusions of the consensus group are given below.

1. The long spinal board is an extrication device solely. Manual in-line stabilisation is a suitable alternative to a cervical collar.

With respect to methods of immobilisation, a firm distinction was made between extrication and transport/evacuation. The Faculty recommends the use of a long board solely as an extrication device and not for the transport of patients to hospital. For this purpose, a scoop stretcher or vacuum mattress should be used. Not only does this abate pressure effects but limits the exposure of patients to unnecessary and detrimental log rolling. It was also felt that manual in-line stabilisation is an appropriate substitute for a cervical collar and may well be better in certain patients such as those with a compromised airway, possible raised intracranial pressure, combative patients and children. However, if a cervical collar is used, this should be correctly sized and fitted. Incorrect use may give a false sense of security and the patient should still be fully immobilised. Once fully immobilised, the collar may be loosened to reduce discomfort, reduce intracranial pressure and potentially facilitate airway management.

2. An immobilisation algorithm may be adopted although the content of this remains undefined.

Selective immobilisation algorithms are viable in the UK prehospital setting. Using algorithms such as these in the prehospital environment would allow clinicians to immobilise only those who meet predefined criteria. The precise details of these prehospital criteria are yet to be decided but may well resemble the NEXUS rules.

With any algorithm, a sensitivity level must be accepted that strikes a balance between prevention of SCI and use of the finite resources available. Furthermore, the practice of ‘clearing the C-spine’ should be aimed at including all serious injuries and treating accordingly.

The suggestion that some of the criteria in the above-mentioned guidelines might be ‘weighted’ was discussed although no firm conclusions were drawn. In particular, it was felt that the subjective elements (eg, mechanism of injury) could be viewed as a source of over-triage whereas objective elements such as age might be given more priority.

3. There may be potential to vary the immobilisation algorithm based on the conscious level of the patient.

It was felt that emphasis should remain on prioritising ABC in polytrauma patients. It was agreed that differentiation between the conscious and unconscious patient and the appropriate treatment for each should be considered in future guidelines. It may be that in the cooperative patient, immobilisation can be deferred until after the primary survey by advising the casualty to refrain from movement. This is obviously not possible in the unconscious patient, but in their case, the need for a primary survey evaluation is paramount and independent movement is less likely. These suggestions are provisional.

4. Penetrating trauma with no neurological signs does not require immobilisation.

In line with other evidence, the meeting agreed that penetrating trauma to the spine does not require immobilisation in the absence of overt neurological signs.

5. ‘Standing take down’ practice should be avoided.

It was also agreed that the practice of a ‘standing take down’ where a person who is wandering around with an element of neck pain gets placed against an upright spinal board and placed horizontal and then immobilised is seldom, if ever, warranted.

6. In the conscious patient with no overt alcohol or drugs on board and with no
major distracting injuries, the patient, unless physically trapped should be
invited to self-extricate and lie on the trolley cot. Likewise, for the non-
trapped patient who has self-extricated, they can be walked to the vehicle and
then laid supine, examined and then if necessary immobilised.

This may seem like a quantum leap but was felt by many involved within the con-
sensus process to be a justified balance of risks versus benefits as previously
described and supported by Hauswald’s work.10 11 With regards to this recom-
mandation, one should err on the side of safety and if there is any question as to
whether the patient fulfils the require-
ments described, then immobilisation
should occur unless this will compromise
the patient in any other way.

7. Further research into effective, prac-
tical and safe immobilisation practice,
and dissemination of this, is required.

The consensus group emphasised the
differences between the prehospital envir-
onment and secondary care and the
unique challenges prehospital practice
presents. As a result, in-hospital guidelines
cannot be assumed to be directly transfer-
able. Research in this area is needed and
research-supported practices will, the
group believes, lead to advances in care,
research-supported practices will, the
able. Research in this area is needed and
presents. As a result, in-hospital guidelines
unique challenges prehospital practice
onment and secondary care and the
differences between the prehospital envir-

CONCLUSIONS

The consensus group was absolutely clear
that a change is needed from a policy of
immobilising necks as much for the pro-
tection of the clinician as for that of the
patient, to a system of selective immobil-
isation designed to reduce the risks to the
trauma victim.

It is important to remember, however,
that voluntary aid organisations will be
looking for guidance in this challenging
area. For these practitioners, guidance for
the ‘non-professional’ managing trauma
should err towards the side of over triage.
They could with benefit, however, be
made aware that cervical collars are not the
panacea that they are often made out
to be and that manual in-line stabilisation
(MILS) is often a more beneficial and
acceptable modality compared with triple
immobilisation. They should also be
encouraged to consider moving away from spinal boards towards non-metallic
scops and the concept of minimal handling.

Contributors The literature search and programme
presentation was produced by DC and MB. The
consensus paper was written by all contributors. The
delivery of the consensus process was coordinated by
Professor KP.

Funding Faculty of Pre-Hospital Care.

Competing interests None.

Provenance and peer review Commissioned;
internally peer reviewed.

Additional material is published online only. To view
please visit the journal online (http://dx.doi.org/10.
1136/emermed-2013-203207)

To cite Connor D, Greaves I, Porter K, et al. Emerg

Received 17 September 2013
Accepted 23 September 2013
doi:10.1136/emermed-2013-203207

REFERENCES

1 Cameron P, Bagge B, McNeil J, et al. The trauma
registry as a statewide quality improvement tool. J
Trauma 2005;59:1469–76.
characteristics, and outcomes of spinal cord injury at
trauma centers in North America. Arch Surg
3 The National Spinal Cord Injury Statistic Center.
Spinal Cord Injury: Facts and figures at a glance.
Birmingham, Alabama: University of Alabama at
4 Aung T, El Masry W. Audit of a British Centre for
5 Spinal Cord Association. Preserving and developing
the National Spinal Cord Injury Service: Phase 2—
6 Winslow J, Hensberry R, Bozeman W, et al. Risk of
thoracolumbar fractures in victims of motor vehicle
collisions with cervical spine fractures. J Trauma
7 American College of Surgeons. Advanced Trauma
Life Support for Doctors. 8th edn. Chicago: American
College of Surgeons, 2009.
8 Reid D, Henderson R, Saboe L, et al. Etiology and
clinical course of missed spine fractures. J Trauma
9 Kwan I, Bunn F, Roberts IG. Spinal Immobilisation
for trauma patients (Review). Prepared and
maintained by The Cochrane Collaboration. Published
10 Hauswald M, Braude D. Spinal immobilization in
trauma patients: is it really necessary? Curr Opin Crit
Care 2002;8:566–70.
Out-of-hospital spinal immobilization: its effect on
12 Blackburn J, Benger J. ‘Clearing’ the cervical spine in
13 The College of Emergency Medicine Clinical
Effectiveness Committee. Guideline on the
management of alert, adult patients with a potential
cervical spine injury in the Emergency Department.
set of clinical criteria to rule out injury to the cervical
spine in patients with blunt trauma. National
Emergency X-Radiography Utilization Study Group. N
C-spine rule for radiography in alert and stable
16 National Institute for Health and Clinical Excellence.
NICE clinical guidance 56: Triage, assessment,
Investigation and early management of head injury in
17 Stiell I, Clement C, McKnight D, et al. The Canadian
C-spine rule versus the NEXUS low-risk criteria in
18 Vaillancourt C, Stiell I, Beaudoin T, et al. The
out-of-hospital validation of the Canadian C-Spine
19 Domeier R. National Association of EMS Physicians
Position Paper: Indications for pre-hospital spinal
20 McCormick P. Cervical spine immobilization before
admission to hospital. Section on Disorders of the
spine and peripheral nerves in: American Association
of Neurological Surgeons. Neurosurgery 2002;50
(suppl)5:57–517.
pre-hospital clinical evaluation for potential spinal
injury is not affected by mechanism of injury.
22 Joint Royal Colleges Ambulance Liaison Committee.
Neck and back trauma. JRCALC, 2006.
Pre-hospital spinal immobilisation: an initial consensus statement

D Connor, I Greaves, K Porter, M Bloch and On behalf of the consensus group, Faculty of Pre-Hospital Care

doi: 10.1136/emermed-2013-203207

Updated information and services can be found at:
http://emj.bmj.com/content/30/12/1067

These include:

References
This article cites 15 articles, 0 of which you can access for free at:
http://emj.bmj.com/content/30/12/1067#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/