Sensitivity of the Aortic Dissection Detection Risk Score, a Novel Guideline-Based Tool for Identification of Acute Aortic Dissection at Initial Presentation
Results From the International Registry of Acute Aortic Dissection

Adam M. Rogers, MD; Luke K. Hermann, MD; Anna M. Booher, MD; Christoph A. Nienaber, MD; David M. Williams, MD; Ella A. Kazerooni, MD; James B. Froehlich, MD; Patrick T. O’Gara, MD; Daniel G. Montgomery, BS; Jeanna V. Cooper, MS; Kevin M. Harris, MD; Stuart Hutchison, MD; Arturo Evangelista, MD; Eric M. Isselbacher, MD; Kim A. Eagle, MD; on behalf of the IRAD Investigators

Background—In 2010, the American Heart Association and American College of Cardiology released guidelines for the diagnosis and management of patients with thoracic aortic disease, which identified high-risk clinical features to assist in the early detection of acute aortic dissection. The sensitivity of these risk markers has not been validated.

Methods and Results—We examined patients enrolled in the International Registry of Acute Aortic Dissection from 1996 to 2009. The number of patients with confirmed acute aortic dissection who presented with 1 or more of 12 proposed clinical risk markers was determined. An aortic dissection detection (ADD) risk score of 0 to 3 was calculated on the basis of the number of risk categories (high-risk predisposing conditions, high-risk pain features, high-risk examination features) in which patients met criteria. The ADD risk score was tested for sensitivity. Of 2538 patients with acute aortic dissection, 2430 (95.7%) were identified by 1 or more of 12 proposed clinical risk markers. With the use of the ADD risk score, 108 patients (4.3%) were identified as low risk (ADD score 0), 927 patients (36.5%) were intermediate risk (ADD score 1), and 1503 patients (59.2%) were high risk (ADD score 2 or 3). Among 108 patients with no clinical risk markers present (ADD score 0), 72 had chest x-rays recorded, of which 35 (48.6%) demonstrated a widened mediastinum.

Conclusions—The clinical risk markers proposed in the 2010 thoracic aortic disease guidelines and their application as part of the ADD risk score comprise a highly sensitive clinical tool for the detection of acute aortic dissection. (Circulation. 2011;123:2213-2218.)

Key Words: aorta • aortic dissection • risk factors • risk score • screening

A acute aortic dissection (AD), among the most lethal of cardiovascular catastrophes, is suspected at initial evaluation in fewer than half of patients ultimately diagnosed with the disease.1–5 Although multiple factors undoubtedly complicate early and accurate identification of the acute AD patient, principal among them is a signal-to-noise phenomenon.

Clinical Perspective on p 2218

The incidence of acute AD in the United States is estimated at 10 000 cases annually, whereas emergency department visits are ≈100 000 000 during the same time period.6–8 Accordingly, a single case of acute AD would be expected in only 1 in 10 000 emergency department presentations. This relatively weak signal is easily overwhelmed by the background noise of patients presenting with complaints that could, but do not, represent acute AD. To accurately identify all cases of acute AD, the clinician must consider the diagnosis in patients presenting not only with chest pain, but also with back pain, abdominal pain, syncope, or complaints related to a perfusion deficit including stroke, myocardial infarct, limb ischemia, and mesenteric ischemia.9 Furthermore, accurate identification or exclusion of the disease requires an advanced imaging study. If every patient presenting with symptoms that might represent AD were imaged, the cost and radiation exposure would be prohibitive.

Continuing medical education (CME) credit is available for this article. Go to http://cme.ahajournals.org to take the quiz.

Received September 14, 2010; accepted March 14, 2011.

From the University of Michigan, Ann Arbor (A.M.R., A.M.B., D.M.W., E.A.K., J.B.F., D.G.M., J.V.C., K.A.E.); Mt Sinai Hospital, New York, NY (L.K.H.); University Hospital Rostock, Rostock, Germany (C.A.N.); Brigham and Women’s Hospital, Boston, MA (P.T.O’G.); Minneapolis Heart Institute, Minneapolis, MN (K.M.H.); University of Calgary, Calgary, Alberta, Canada (S.H.); Hospital General Univir Vall d’Hebron, Barcelona, Spain (A.E.); and Massachusetts General Hospital, Boston (E.M.I.).

Guest Editor for this article was Robert O. Bonow, MD.

Correspondence to Kim A. Eagle, MD, University of Michigan, Ann Arbor, 1500 E Medical Center Dr, Suite 2131, Ann Arbor, MI 48109-5852. E-mail keagle@med.umich.edu

© 2011 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.110.988568
Recently, the American Heart Association, American College of Cardiology, and other professional societies published guidelines for the diagnosis and management of thoracic aortic disease (TAD). Included in the guidelines is a risk assessment tool that was developed on the basis of an extensive review of the literature on acute AD combined with the collective experience of the writing committee. The aortic dissection detection (ADD) risk score was adapted from this tool to provide clinicians with a simple, systematic method for screening large volumes of patients at the bedside. By focusing on specific high-risk predisposing conditions, pain features, and physical examination findings, patients are grouped into 1 of 3 categories on the basis of their pretest risk of acute AD. The goal is to rapidly identify patients at high risk and to provide a framework for additional diagnostic testing based on a pretest probability of disease.

Because this guideline-based tool has not been validated in a clinical setting, it is not known whether it will effectively identify patients with a high probability of acute AD. The purpose of the present study is to apply the ADD risk score to the International Registry of Acute Aortic Dissection (IRAD) database to determine the percentage of this group of patients with diagnosed AD that would have been identified.

Methods
The IRAD database is a multinational registry designed to provide a representative population of patients with acute AD. Treatment during the index hospitalization or in follow-up was not standardized, but at the discretion of each patient’s treating physician. Full details of the IRAD methods have been published previously. All sites have institutional review board approval to participate in IRAD.

Study Population
We examined data on all patients with acute AD enrolled in IRAD centers between January 1, 1996, and December 31, 2009 (24 centers). Acute AD was defined as any nontraumatic dissection within 14 days of symptom onset. Patients were identified prospectively at presentation or retrospectively via discharge diagnoses, imaging, and hospital databases. Diagnosis was based on imaging, surgical visualization, or autopsy.

Data Collection
Data on 290 variables were recorded on a standardized form that included information on patient demographics, history, clinical presentations, physical findings, imaging study results, details of medical and surgical treatment, and patient outcomes, including mortality. Data forms were reviewed for internal consistency and validity and then scanned electronically into a Microsoft Access database.

Imaging was interpreted at each patient’s respective tertiary care center by specialized radiologists and echocardiographers and entered into the data form. Helical computed tomography, transesophageal echocardiography, magnetic resonance imaging, and/or angiography was obtained. Data contained in IRAD are identical to those reported to the physicians caring for the patients.

Statistical Analysis
We assessed the presenting characteristics of patients with confirmed acute AD to evaluate the sensitivity of the TAD guideline diagnostic algorithm. High-risk clinical markers that were tested include the following: history of Marfan syndrome, family history of aortic disease, history of known aortic valve disease, history of recent aortic manipulation, history of known thoracic aortic aneurysm, abrupt onset of pain, severe pain intensity, ripping or tearing pain, pulse deficit or systolic blood pressure differential between extremities, focal neurological deficit (in conjunction with pain), new murmur of aortic insufficiency (in conjunction with pain), and hypotension or shock state. After determining the frequency of each individual risk marker among patients with acute AD, we aggregated the risk markers into 3 categories (high-risk predisposing conditions, high-risk pain features, and high-risk examination features) on the basis of the algorithm proposed in the TAD guidelines (Figure 1).

Results
Of 2538 patients with acute AD, 2430 (95.7%) were identified by 1 or more of 12 proposed clinical risk markers, whereas 2123 (83.6%) had at least 2 clinical risk markers present. A large percentage of patients (46.4%) had either 3 or 4 risk markers identified at the time of presentation (Table 1).

High-risk pain features, such as abrupt onset of pain (79.3%), severe intensity of pain (72.7%), and pain described as ripping or tearing (21.7%) were most frequently present in patients with acute AD. The most common high-risk predisposing conditions identified were known thoracic aortic aneurysm (14.7%) and known aortic valve disease (11.9%), whereas the most common high-risk examination features included a new murmur of aortic insufficiency in conjunction with pain (23.6%) and a pulse deficit or systolic blood pressure differential between extremities (20.3%) (Table 2).

Among the 3 risk categories, 713 patients (28.1%) had at least 1 of the high-risk predisposing conditions present, 2220 patients (87.5%) had at least 1 of the high-risk pain features present, and 1294 patients (51.0%) had at least 1 of the high-risk examination features present (Figure 2). With the use of an ADD risk score of 0 to 3 based on the number of risk categories for which criteria were met, 108 patients (4.3%) scored 0 and would have been considered low risk, 927 patients (36.5%) scored 1 and would have been considered intermediate risk, and 1503 patients (59.2%) scored 2 or 3 and would have been considered high risk (Figure 2).

Among 927 patients (36.5%) with an intermediate risk score of 1, high-risk pain features, including abrupt onset of pain (72.0%) and severe pain intensity (68.5%) were most commonly identified (Table 3). Cases of AD were identified with each of the 12 clinical risk markers present in isolation.

Of the 108 patients (4.3% of total population) with no clinical risk markers present (ADD risk score 0), 72 had chest x-rays recorded, of which 35 (48.6%) were noted to have a widened mediastinum (Figure 2). Compared with patients identified by the algorithm, those 108 not identified were more frequently nonwhite race (23.5% versus 12.0%; P=0.001), had a history of diabetes mellitus (12.9% versus 5.9%; P=0.006), and presented as normotensive (49.4% versus 36.8%; P=0.017), whereas they less frequently presented with chest pain (40.5% versus 77.6%; P<0.001), back pain (24.1% versus 54.5%; P<0.001), head or neck pain (5.3% versus 18.1%; P=0.001), leg pain (3.8% versus 12.8%; P=0.008), radiating pain (12.7% versus 38.9%;
Patients not identified by the algorithm were more frequently enrolled in the IRAD database from US hospitals compared with European hospitals (6.0% versus 2.5%; \(P<0.001\)).

Discussion

The diagnostic algorithm proposed in the TAD national guidelines is highly sensitive (95.7%) for the detection of acute AD at initial presentation. The ADD risk score was adapted from this diagnostic algorithm to provide clinicians...
with a simple, systematic method for screening large volumes of patients at the bedside. This novel score similarly classified 95.7% of patients diagnosed with acute AD in the IRAD database as either intermediate or high risk. Of the 2430 patients with any high-risk feature, 36.5% were categorized as intermediate risk (ADD score 1) and 59.2% were categorized as having a high risk of acute AD (ADD score 2 or 3) (Figure 2).

The clinical utility of the ADD risk score rests on its sensitivity and specificity as a diagnostic screening tool. The results from this study suggest that the ADD risk score, with the use of only information that is available at the bedside, offers adequate sensitivity to capture the vast majority of patients presenting with acute AD. Furthermore, 59% of those meeting criteria for the algorithm were categorized as high risk, in which the recommendation for expedited imaging has the potential to improve time to diagnosis of this acute life-threatening condition.\(^{10,11}\) In the group categorized as intermediate risk (ADD score 1; 36.5% of study population), the diagnostic pathway proposed in the TAD guidelines provides specific clinical steps intended to promote prompt imaging in the appropriate subset of these patients (Figure 1). Given the relative infrequency of acute AD, which often leads to missed or delayed diagnosis, application of the ADD risk score has the potential to draw necessary clinical attention to the possibility of acute AD while ensuring that >95% of patients with true dissection meet criteria for further investigation.

Among the 4.3% of patients in IRAD categorized as low risk (ADD score 0), the clinical utility of the tool is less concrete, but still appears helpful. By guideline protocol, patients categorized as low risk should undergo diagnostic aortic imaging if a widened mediastinum is noted on chest x-ray, as was the case in nearly half (48.6%) of all low-risk IRAD patients who had a chest x-ray performed. With regard to the remainder of patients categorized as low risk by the ADD score (3% of all patients in IRAD), the pathway described in the guideline would recommend consideration of diagnostic aortic imaging if there was no identified source of the patient’s presenting symptoms at the completion of the initial evaluation, potentially providing a mechanism to capture at least some of this group.\(^{10}\)

Although the performance demonstrated by the ADD score in the present study is encouraging, there are specific limitations that warrant discussion. Because acute AD is a relatively rare disease process, testing the ADD score prospectively is not very feasible. We therefore used IRAD, the largest registry of acute AD, to test the clinical performance of the tool. There are inherent limitations to validating a tool in this manner. First, IRAD contains only patients in whom acute AD was identified at some point during their evaluation. Because patients with unrecognized acute AD do not appear in the database, and because these patients may in fact be unrecognized as a result of atypical presentations, we would anticipate that the risk score will not perform as well in an undifferentiated patient population.

Additionally, the present study does not allow for any estimation of the specificity of the ADD risk score. It is possible that a significant percentage of patients presenting with chest, abdominal, or back pain of a nonaortic pathogenesis would be classified as intermediate or high risk, leading to potential overtesting as an unintended consequence of widespread implementation of the proposed pathway. To address this issue, the original algorithm proposed in the TAD guidelines was modified when the ADD risk score was designed. Pain described as sharp or stabbing was not included as a stand-alone marker of risk; rather, high-risk pain features include pain described as ripping or tearing, abrupt in onset, or severe in intensity. Connective tissue disease was also excluded as a stand-alone high-risk predisposing condition, whereas patients with Marfan syndrome continue to meet criteria. Although we believe that these adjustments may help to increase the specificity of the ADD risk score, the present study does not offer clarity on this issue.

Further investigation is needed to corroborate the accuracy of the ADD risk score, and in particular to assess the specificity of this diagnostic screening tool. As is the case with most screening tools, specificity will likely prove to be significantly lower than sensitivity. One potential future strategy to address this issue might include the use of an

Table 1. Number of Patients With Acute Aortic Dissection Presenting With 1 or More Clinical Risk Markers (n=2538)

<table>
<thead>
<tr>
<th>No. of Risk Markers</th>
<th>No. of Patients</th>
<th>Percentage of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>108</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>307</td>
<td>12.1</td>
</tr>
<tr>
<td>2</td>
<td>666</td>
<td>26.2</td>
</tr>
<tr>
<td>3</td>
<td>750</td>
<td>29.6</td>
</tr>
<tr>
<td>4</td>
<td>426</td>
<td>16.8</td>
</tr>
<tr>
<td>5</td>
<td>187</td>
<td>7.4</td>
</tr>
<tr>
<td>6</td>
<td>79</td>
<td>3.1</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>2538</td>
<td>100.0</td>
</tr>
</tbody>
</table>

SBP indicates systolic blood pressure.

Table 2. Number of Patients With Acute Aortic Dissection Identified by Each Clinical Risk Marker (n=2538)

<table>
<thead>
<tr>
<th>Risk Marker</th>
<th>No. of Patients</th>
<th>Percentage of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>01: Marfan syndrome</td>
<td>110</td>
<td>4.3</td>
</tr>
<tr>
<td>02: Family history of aortic disease</td>
<td>48</td>
<td>1.9</td>
</tr>
<tr>
<td>03: Known aortic valve disease</td>
<td>303</td>
<td>11.9</td>
</tr>
<tr>
<td>04: Recent aortic manipulation</td>
<td>70</td>
<td>2.8</td>
</tr>
<tr>
<td>05: Known thoracic aortic aneurysm</td>
<td>374</td>
<td>14.7</td>
</tr>
<tr>
<td>06: Abrupt onset of pain</td>
<td>2012</td>
<td>79.3</td>
</tr>
<tr>
<td>07: Severe pain intensity</td>
<td>1845</td>
<td>72.7</td>
</tr>
<tr>
<td>08: Ripping or tearing pain</td>
<td>551</td>
<td>21.7</td>
</tr>
<tr>
<td>09: Pulse deficit or SBP differential</td>
<td>515</td>
<td>20.3</td>
</tr>
<tr>
<td>10: Focal neurological deficit (in conjunction with pain)</td>
<td>273</td>
<td>10.8</td>
</tr>
<tr>
<td>11: Murmur of aortic insufficiency (new in conjunction with pain)</td>
<td>599</td>
<td>23.6</td>
</tr>
<tr>
<td>12: Hypotension or shock state</td>
<td>407</td>
<td>16.0</td>
</tr>
</tbody>
</table>
existing or novel biomarker to further risk stratify patients identified as intermediate risk by the ADD risk score. Conceptually, this approach is somewhat analogous to the way in which Wells criteria and D-dimer testing combine to identify a low-risk population that does not require definitive radiological testing to rule out pulmonary embolism. Analyses including the recent International Registry of Acute Aortic Dissection Substudy on Biomarkers (IRAD-Bio) offer preliminary evidence to suggest that D-dimer may have relevance in patients with acute AD as well. Further study is warranted to investigate whether D-dimer or another biomarker could complement the ADD risk score in the initial triage of patients with suspected acute AD.

Conclusion

The clinical risk markers proposed in the 2010 TAD guidelines and their application as part of the ADD risk score comprise a highly sensitive clinical tool for the detection of acute AD.

Sources of Funding

IRAD is supported by grants from the University of Michigan Health System, Varbedian Fund for Aortic Research, Hewlett Foundation, Mardigian Foundation, and Gore Inc.

Disclosures

Dr Froehlich reports the following conflicts: consultant: Pfizer, Sanofi-aventis; Speakers Bureau: Pfizer, Sanofi-aventis, Merck; contracted research: Blue Cross/Blue Shield of Michigan, Mardigian Foundation, Fibromuscular Disease Society of America. Dr Eagle
reports the following conflicts: grant/research support: Gore Inc, Hewlett Foundation, Mardigan Fund, Verbedian Fund; consultant: National Institutes of Health/National Heart, Lung, and Blood Institute. The other authors report no conflicts.

References

Go to http://cme.ahajournals.org to take the CME quiz for this article.
Sensitivity of the Aortic Dissection Detection Risk Score, a Novel Guideline-Based Tool for Identification of Acute Aortic Dissection at Initial Presentation: Results From the International Registry of Acute Aortic Dissection

Circulation. 2011;123:2213-2218; originally published online May 9, 2011; doi: 10.1161/CIRCULATIONAHA.110.988568

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/123/20/2213

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2011/12/22/CIRCULATIONAHA.110.988568.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/
급성 대동맥박리증 스크리닝을 위한 새로운 비법: ‘1분이면 끝!’

김용진 교수 서울대학교병원 순환기내과

Summary

배경
2010년 미국심장협회 가이드라인에서는 급성 대동맥박리증의 빠른 진단을 돕기 위하여 고위험군을 선별할 수 있는 위험지표들을 제시하였다. 하지만 이 위험지표들의 민감도는 아직 검증된 바 없다.

방법 및 결과
1996-2009년까지 International Registry of Acute Aortic Dissection(IRAD)에 포함된 환자들을 대상으로 하였다. 급성 대동맥박리증으로 확진된 환자 중 가이드라인에서 제시한 12개의 위험지표를 나타낸 환자의 수를 분석하였다. 그리고 각 환자에서 대동맥박리증 진단(aortic dissection detection, ADD) 위험스코어를 계산하였다. 급성 대동맥박리증이 있었던 2,538명의 환자 중 2,430명(95.7%)이 위험적 위험지표 12개 중 1개 이상에 합당한 소견을 보였다. ADD 위험스코어를 사용하였을 때, 108명(4.3%)은 낮은 위험도(ADD 스크어 0), 927명(36.5%)은 중간 위험도(ADD 스크어 1), 1,501명(59.2%)은 높은 위험도(ADD 스크어 2, 3)를 보였다. 위험지표가 없는 108명의 환자(ADD 스크어 0) 중 72명에서 움부 X-선이 확명되었으며, 이 중 35명(48.6%)에서 증강동 확장소견이 관찰되었다.

결론
2010년 가이드라인에서 제시된 임상적 위험지표와 ADD 위험스코어는 급성 대동맥박리증 진단에 높은 민감도를 보였다.
심혈관계에서 가장 자주 발생하는 하나인 급성 대동맥박리증은 초기에는 절반 정도의 환자에서만 약성적인 의심과 함께 적절한 전단적 검사가 이루어질 정도로 임상적 이상과 진단이 어려운 질환이다. 미국에서 급성 대동맥박리증의 발생 건수는 연간 10,000건 정도이다. 하지만, 연간 월급실 내원 환자는 100,000,000명을 넘기 때문에 신속히 월급실을 방문하는 환자 10,000명 중 1명에서 급성 대동맥박리증이 발생한다고 볼 수 있다. 이렇게 드물게 나타나는 반면, 특이증상이 없기 때문에 진단이 어려움이 있다고 하겠다. 즉, 모든 급성 대동맥 박리증 환자들은 새만하는 것이 정확하게 진단하기 위해서는 롱 룸이나, 동요 증상, 복통, 설사, 뇌혈증, 심근경색, 하지혈증 등 다양한 증상에서 급성 대동맥박리증을 의심해야 한다. 하지만 정확한 진단을 위해서는 영상검사가 필수적이므로, 위와 같은 증상을 보이는 모든 환자에서 검사를 시행하게 되면 영상학적 방법과 방사선 노출 문제가 큰 걸등이 될 것이다.

최근 미국 심장협회에서는 여러 문헌들을 리뷰하여 급성 대동맥박리증의 임상적 위험지표를 도출하고 이를 바탕으로 대동맥박리증 진단 위험스코어를 제시하였는데, 이는 임상학적으로 많은 수의 환자에서 대동맥박리증 환자를 캐치할 수 있는 간편하고 체계적인 방법을 제공하고자 함이었다. 유발인자, 통증의 양상, 신체 검사 소견을 바탕으로 12개의 위험지표를 제시하고 이 위험지표에 따라 환자를 3단계의 위험으로 분류하였다. 12개의 위험지표는 고위험 유발인자, 고위험 통증양상, 고위험 신체검사 소견 등 크게 3가지로 이루어져 있다(Figure 1). 즉, 1) 마른 동요, 2) 대동맥혈관의 가속적, 3) 대동맥 혈관 혈액관, 4) 최근 대동맥 관련 수술이나 시술을 받은 환자, 5) 홍부대동맥류 환자 등 5가지의 고위험 유발인자, 6) 갑작스럽게 발생한 7) 증여는 드문 양상의 8) 매우 심한 통증이 가속이나 동 또는 복부에서 나타나는 고위험 통증 양상, 그리고, 9) 액체충지가 인지되거나 최우혈압, 상하지혈압 등 관류경로의 소견, 10) 국소적 신경학적 이상소견은 통증과 함께 나타날 때, 11) 전에 없던 대동맥관협류증 잡음이 들리거나 홍통과 함께 전진될 때, 12) 저혈압이나 소크 등의 고위험 신체검사 소견이다 (Table 1). 이를 통해 얻은 ADD 위험스코어는 임상의들이 쉽게 추가 영상검사가 필요한 환자들을 찾아낼 수 있도록 도안한 것이지만, 아직 그 유용성에 대한 검증은 없었다. 본 논문은 이런 ADD 위험스코어의 만감도를 검증했다는 측면에서 큰 의미가 있다.

연구 결과, 미국 심장협회에서 제시한 가이드라인은 95.7%의 높은 민감도를 보였다. ADD 위험스코어

<table>
<thead>
<tr>
<th>Table 1. 12가지 위험지표와 해당하는 환자분포</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Patients</td>
</tr>
<tr>
<td>01: Marfan syndrome</td>
</tr>
<tr>
<td>02: Familial history of aortic disease</td>
</tr>
<tr>
<td>03: Known aortic valve disease</td>
</tr>
<tr>
<td>04: Recent aortic manipulation</td>
</tr>
<tr>
<td>05: Known thoracic aortic aneurysm</td>
</tr>
<tr>
<td>06: Abnormal onset of pain</td>
</tr>
<tr>
<td>07: Severe pain intensity</td>
</tr>
<tr>
<td>08: Rippling or tearing pain</td>
</tr>
<tr>
<td>09: Pulse deficit or SBP differential</td>
</tr>
<tr>
<td>10: Focal neurological deficit (in conjunction with pain)</td>
</tr>
<tr>
<td>11: Murmur of aortic insufficiency (new in conjunction with pain)</td>
</tr>
<tr>
<td>12: Hypotension or shock state</td>
</tr>
</tbody>
</table>