Study objective:

Syncope is a common condition that is usually benign but occasionally associated with death. This study evaluates the incidence of death after an emergency department (ED) visit for syncope and whether these deaths can be predicted.

Methods:

A prospective cohort study was conducted during a 45-month period. All patients were followed up 1-and-a-half years after their initial ED visit to determine whether they had died. Death certificates were independently reviewed by 2 physicians for the cause and date of death to determine whether the death was possibly related to the initial visit for syncope. Sensitivity and specificity of risk factors (defined by the San Francisco Syncope Rule) or age greater than 65 years was calculated for all-cause mortality and mortality thought possibly related to syncope.

Results:

There were 1418 consecutive patients with syncope during the study period, representing 1.2% of all ED visits. The all-cause death rate was 1.4% at 30 days, 4.3% at 6 months, and 7.6% at 1 year. It was believed that the death rates from causes possibly related to syncope were 2.3% and 3.8% at 6 months and 1 year. Of the 112 deaths at 1 year, 37% were cardiac related. At 6 months, the risk factors had a sensitivity of 89% (95% confidence interval [CI] 79% to 95%) and specificity of 53% (95% CI 52% to 53%) for all-cause mortality and sensitivity of 100% (95% CI 90% to 100%) and specificity 52% (95% CI 52% to 53%) for predicting deaths likely or possibly related to syncope. Age greater than 65 years had similar sensitivity but much worse specificity compared with the set combined risk factors.

Conclusion:

Deaths related to syncope after an ED visit are low, especially in the first 6 months and can usually be predicted by risk factors. [Ann Emerg Med. 2008;51:585-590.]

INTRODUCTION

Background

Approximately a quarter of the population will experience the symptom of syncope sometime during their lifetime. Frequently, these patients will present to emergency departments (ED), accounting for 1% to 2% of all ED visits and hospital admissions. Syncope is not only a common problem but also a challenging one for physicians. It occurs in the old and the young, it can be infrequent or recurrent, and although usually a benign symptom, it may have a fatal prognosis. A population-based cohort from the Framingham Study determined that patients with vasovagal syncope have a prognosis that is excellent, whereas those with syncope thought to be cardiac related have an increased risk of death, with a mortality rate of 10% at 6 months. Unfortunately, on initial presentation in the ED the exact cause of syncope is unknown for most patients, making it difficult to classify patients into these prognostic categories.

Importance

Given the high proportion of patients with unclear causes, a large number of patients with unknown causes of syncope are...
admitted from EDs, contributing significantly to the $2 billion cost of syncope admissions each year.\(^6\) Taking a risk-stratification approach seems to be practical and may lead to the more efficient disposition of patients treated in the ED.\(^7,9\) A multiphase prospective study, the San Francisco Syncope Rule, was designed to risk-stratify patients and augment physician decisionmaking in the acute setting by helping to predict patients at risk for short-term serious outcomes in need of emergency admission.\(^4,10\)

Goals of This Investigation

We examine the incidence of death from a large cohort of consecutive ED patients with syncope and to determine whether the risk factors from the San Francisco Syncope Rule can also predict death up to a year after the initial ED visit.

MATERIALS AND METHODS

This prospective cohort study of consecutive ED patients was conducted at a large university teaching hospital and received initial approval from the institution’s committee on human research under a waiver of informed consent for the derivation and validation studies. A further waiver of consent was granted to complete the follow-up and collection of data in this study. The collection of the cohort and study methods has previously been published.\(^4,10\) In summary, patients presenting with acute syncope or near syncope as a symptom for their ED visit were considered for the study. To identify patients, we used physician awareness, student volunteers, and a real-time continuous electronic tracking system to identify all possible patients with a symptom of syncope. All student volunteers, physicians, and house staff were made aware of the study. The electronic tracking system works by screening the hospital registration system in real time. According to the patients’ presenting complaints (syncope, syncopal, faint, passed out, fall, collapse, light headed, dizzy), study personnel would be alerted by text messaging of all potential study patients.\(^11\) Potential patients identified were brought to the attention of the attending physician while they were treating the patient. That physician then made the final decision to enroll the patient, depending on whether in their opinion syncope was a symptom that had occurred in that patient, according to our definition. As an operational definition for the study, we defined syncope to all providers as a transient loss of consciousness, with return to baseline neurologic function.

We specifically excluded patients with trauma-associated LOC, alcohol- or drug-related loss of consciousness, and patients with a definite seizure. Patients with loss of consciousness associated with an altered level of consciousness or persistent new neurologic deficits did not meet our operational definition of syncope and were also excluded.

Outcome Measures

We used the online Social Security Death Index to identify whether a patient had died.\(^12\) When a person dies, his or her social security number is retired by the federal government. Each patient in the cohort had his or her name and social security number checked in the online index at least 1-and-a-half years after the original ED visit to ensure that we would have accurate 1-year death data. The online index is updated frequently and reported to be accurate to within 6 months of the death of the patient and comparable in accuracy to the National Death Index.\(^13\) Furthermore, to ensure the validity of the Social Security Death Index in this cohort we undertook a study to determine the accuracy of the Social Security Death Index for determining death at 6 months and using direct follow-up as the criterion standard and found it to be 100% sensitive and specific for this population.\(^14\)

If a patient was verified to be dead with our death index search, we then acquired the death certificate to ascertain the official cause of death and tried to verify this when possible with the inpatient record and primary physician. Two physicians then independently reviewed the deaths and broke them into categories, and based on cause, date of death, and date of initial visit, they determined whether the death was possibly related to the ED visit for syncope. In general, they were instructed to be conservative, and all cardiac causes were considered possibly related to syncope, as were patients whose cause of death was unknown. If either physician thought the case was possibly related to the initial visit for syncope, then the case was considered to be so. Both physicians were blinded to the
Table 1. Characteristics of consecutive ED visits for syncope.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients, N=1474</th>
<th>High Risk, N=718 (49%)</th>
<th>Low Risk, N=756 (51%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean, y (95% CI)</td>
<td>62 (61–63)</td>
<td>69 (67–70)</td>
<td>56 (54–58)</td>
</tr>
<tr>
<td>Female (%)</td>
<td>830 (56)</td>
<td>339 (47)</td>
<td>481 (64)</td>
</tr>
<tr>
<td>Admitted from ED (%)</td>
<td>840 (57)</td>
<td>639 (76)</td>
<td>201 (24)</td>
</tr>
</tbody>
</table>

Primary Data Analysis

Physician agreement about whether the patient's death was possibly related to syncope was calculated with the κ statistic. Sensitivity and specificity of the San Francisco Syncope Rule were calculated for all-cause and syncope-related mortality. We also performed a Kaplan-Meier survival analysis, comparing high- and low-risk patients.

RESULTS

One thousand four hundred eighteen patients had 1,474 visits for syncope, representing 1.2% of the 124,801 ED visits during the 45-month study period (from July 1, 2000, to February 28, 2002; and July 15, 2002, to August 31, 2004). Fifty-seven percent of all patient visits were admitted, 56% were women, and the average age was 62 years (Table 1).

The death rate from all-cause mortality was 1.4% at 30 days, 2.9% at 90 days, 4.3% at 6 months, and 7.6% at 1 year. For deaths possibly related to syncope, the rate was 1.3% at 30 days, 1.8% at 90 days, 2.3% at 6 months, and 3.8% at 1 year (Figure 1). Deaths at 1 year were classified as cardiac 37%, chronic disease (including cancer) 36%, neurologic 9%, pulmonary embolism 2%, accidental 1%, and other 15% (includes infection, pneumonia) (Table 2).

At 6 months, the San Francisco Syncope Rule had a sensitivity of 100% (95% confidence interval [CI] 90% to 100%) and specificity 52% (95% CI 52% to 53%) for deaths possibly related to syncope and sensitivity of 89% (95% CI 79% to 95%) and specificity of 53% (95% CI 52% to 53%) for predicting all-cause mortality. At 1 year, the San Francisco Syncope Rule had a sensitivity of 93% (95% CI 83% to 97%) and specificity 53% (95% CI 52% to 53%) for predicting deaths likely or possibly related to syncope and sensitivity of 83% (95% CI 75% to 89%) and specificity 54% (95% CI 53% to 55%) for all-cause mortality (Table 3). Survival analysis shows those at low risk had a significantly lower risk of death (Figure 2).

Table 4 compares the sensitivity and specificity of the San Francisco Syncope Rule versus age greater than 65 years as a lone risk factor for death after an ED visit at 30, 90, and 180 days for all-cause mortality.

Physicians had good agreement when determining which patients' deaths were possibly related to syncope: κ 0.71 (95% CI 0.58 to 0.84).

LIMITATIONS

Our study has a few limitations. Even though our cohort is the largest of consecutive ED patients with syncope to date, we still had modest CIs around the sensitivity of the prediction rule, given the low incidence of death. It is also possible that because all patients in the cohort came from a single tertiary-care center that the results may not be generalizable. However, in this case the bias would be that the death rates are overestimated because the cohort was from a medical center with one of country's highest acuity rates.

DISCUSSION

In this large prospective cohort of consecutive ED patients with syncope, we have demonstrated that the 30-day incidence of death from all causes is low and that the 1-year rate remains low when the death could have been related to syncope. Furthermore, we have shown that these deaths can be risk stratified with established risk factors, with death among low-risk patients being rare even up to a year and regardless of cause of death (Figure 1). The San Francisco Syncope Rule is a risk-stratification tool derived and validated to predict short-term outcomes. This study demonstrates that the risk factors in the rule can also help predict death up to 1 year. A risk-stratification approach that can predict short-term adverse outcomes and death throughout the next year likely provides a better rationale of who should receive a more aggressive evaluation either as an inpatient or through referral as an outpatient.

The death rate from all-cause mortality was 1.4% at 30 days, 2.9% at 90 days, 4.3% at 6 months, and 7.6% at 1 year. For deaths possibly related to syncope, the rate was 1.3% at 30 days, 1.8% at 90 days, 2.3% at 6 months, and 3.8% at 1 year (Figure 1). Deaths at 1 year were classified as cardiac 37%, chronic disease (including cancer) 36%, neurologic 9%, pulmonary embolism 2%, accidental 1%, and other 15% (includes infection, pneumonia) (Table 2).

At 6 months, the San Francisco Syncope Rule had a sensitivity of 100% (95% confidence interval [CI] 90% to 100%) and specificity 52% (95% CI 52% to 53%) for deaths possibly related to syncope and sensitivity of 89% (95% CI 79% to 95%) and specificity of 53% (95% CI 52% to 53%) for predicting all-cause mortality. At 1 year, the San Francisco Syncope Rule had a sensitivity of 93% (95% CI 83% to 97%) and specificity 53% (95% CI 52% to 53%) for predicting deaths likely or possibly related to syncope and sensitivity of 83% (95% CI 75% to 89%) and specificity 54% (95% CI 53% to 55%) for all-cause mortality (Table 3). Survival analysis shows those at low risk had a significantly lower risk of death (Figure 2).

Table 4 compares the sensitivity and specificity of the San Francisco Syncope Rule versus age greater than 65 years as a lone risk factor for death after an ED visit at 30, 90, and 180 days for all-cause mortality.

Physicians had good agreement when determining which patients’ deaths were possibly related to syncope: κ 0.71 (95% CI 0.58 to 0.84).
According to prognostic classification, patients eventually diagnosed with cardiac and neurologic disease after having syncope are at an increased risk of death, as demonstrated by the Framingham Study. Those with a documented cardiac cause and syncope had 2 times the rate of death of patients without syncope, and those with syncope related to a neurologic cause were 50% more likely to die. People with an unknown cause also had a significantly increased risk of death of 30%, whereas those with neurally mediated (vasovagal) syncope had a lower risk of death. The group with unknown cause represented the largest group in this cohort, at approximately 40%.

Determining which patients with an unknown cause of syncope are at risk is the challenge facing physicians. This problem of “unknown” syncope is further magnified for physicians assessing patients with syncope in the ED, where the rate of patients with an unclear cause for their syncope may be as high as 60%. In this cohort, after 30 days the proportion of patients with syncope and unclear cause was 47%, and it is this large heterogeneous group of patients who, for the most part, are “low risk” but because of the “high stakes” (small risk of increase morbidity and mortality) are often admitted. It has been reported that physicians admit 30% of syncope patients that they believe have less than a 2% risk of a serious outcome. This inefficient use of hospitalization accounts for a large portion of the estimated $2 billion spent annually on syncope admissions alone. It is this “unknown” group of patients in which the efficiency of admission can be improved through risk stratification by providing a prospective prognosis for risk of short-term outcomes and long-term death.

In 2000, we started a multiphase study to address this important problem. To risk-stratify ED patients with syncope, we used strict methodologic criteria for decision rule development. We derived the San Francisco Syncope Rule on 684 patient visits by assessing the accuracy and reliability of 50 predictor variables used in the evaluation of patients with syncope and developed a highly sensitive clinical decision rule that we believed would augment physician judgment and allow physicians to rationally decide which patients with syncope need
admission, according to their short-term risk. In a separate validation study, we assessed the rule’s performance on 791 visits to predict only outcomes that had not occurred during the initial ED assessment. The rule has high sensitivity and acceptable specificity, with the potential to augment physician judgment and improve the efficiency of admission. The rule is not complex and is easily remembered by a simple mnemonic, “CHESS” (history of Congestive heart failure, Hematocrit <30, abnormal ECG result, a patient complaint of Shortness of breath, and a triage Systolic blood pressure <90 mm Hg).

Others examining risk factors for 1-year death and syncope found that components of our rule were also important risk factors on their smaller cohorts. In a retrospective study, Kapoor and Hanusa showed that patients with cardiac disease or risk factors and ECG abnormalities were at greater risk of death or arrhythmia, regardless of whether they had syncope. Furthermore, both Martin et al and Colivicchi et al found that an abnormal ECG result and history of congestive heart failure were predictors of 1-year death with syncope. These investigators also found age to be an important risk factor and came up with different cut points for age. However, age alone is a marker for increased mortality, regardless of the patient’s presenting problem, and to use any specific cut point makes little sense because there is no single age cutoff, but rather a continuum of gradually increasing risk with age.

There has been a call for us to reconsider age in our rule. However, closer evaluation will allow people to realize that age was considered in the derivation. In our derivation set, we too found age an important variable in our univariate analysis, and during the derivation we tried numerous cut points but found age was too nonspecific (even at age >75 years) to include in a decision rule for short-term risk, and we determined that there were more efficient predictors. It should also be apparent that high-risk San Francisco Syncope Rule patients are significantly older than the low-risk group, as demonstrated in Table 1, making the incorporation of age into the rule less valuable or important. Furthermore, Table 4 demonstrates—although age is sensitive—just how particularly nonspecific age is when used alone as a risk factor. This analysis shows that the San Francisco Syncope Rule can risk-stratify patients better than age alone when predicting death after an ED visit for syncope and should discourage those who use age as the sole or most important determinant for risk and ED disposition.

Our work suggests that short- and long-term outcomes can be predicted in patients presenting to EDs with syncope. We believe that risk factors can define patients into high- and low-risk groups that can augment physician judgment and lead to the safe disposition and appropriate evaluation of the majority
of these patients as inpatients or outpatients, according to their risk.

Supervising editors: Robert Silbergleit, MD; William G. Barsan, MD

Author contributions: JQ and DM conceived the study, designed the trial, and obtained research funding. JQ, DM, NK, and CY undertook recruitment and follow-up of patients. JQ and MAK managed the data, including quality control. IG and GW provided statistical advice on study design and the data. JQ drafted the article, and all authors contributed substantially to its revision. JQ takes responsibility for the paper as a whole.

Funding and support: By Annals policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article, that might create any potential conflict of interest. See the Manuscript Submission Agreement in this issue for examples of specific conflicts covered by this statement. Funded in part through a grant from the Office of Technology and Licensing at Stanford University and an intramural REAC grant from the University of California, San Francisco.

Address for reprints: James Quinn, MD, MS, Division of Emergency Medicine, Stanford University, 701 Welch Rd, Suite C103, Palo Alto, CA 94304; 650-736-4391, fax 650-723-0121; E-mail quinnj@stanford.edu.

REFERENCES

Did you know?

You can track the impact of your article with citation alerts that let you know when your article (or any article you’d like to track) has been cited by another Elsevier-published journal.

Visit www.annemergmed.com today to see what else is new online!