Introduction

Ketamine is a powerful anaesthetic agent with anxiolytic and analgesic and amnesic properties with a wide safety margin.

This guideline covers its use in analgesic sedation, primarily for children.

The doses advised for analgesic sedation are designed to leave the patient capable of protecting their airway. Consequently there is a significant risk of failure of sedation and the clinician must recognise that the option of general anaesthesia must be discussed with the patient and parents.

Ketamine should be only used by clinicians experienced in its use and capable of managing any complications.

There should be an audit method in place to allow for adequate clinical governance.

Evidence Levels

1 Evidence from at least one systematic review of multiple well designed randomised control trials
2 Evidence from at least one published properly designed randomised control trials of appropriate size and setting
3 Evidence from well designed trials without randomisation, single group pre/post, cohort, time series or matched case control studies
4 Evidence from well designed non experimental studies from more than one centre or research group
5 Opinions, respected authority, clinical evidence, descriptive studies or consensus reports

Indication: (Evidence Levels 2-3)

Ketamine has a role in inducing mild protective sedation in children who will need a painful or frightening procedure performing in the course of their emergency care.

It can be used instead of formal anaesthesia for minor and moderate procedures in combination with local anaesthetic techniques.

It potentially replaces physical restraint of the child.

Trials suggest 90% efficacy for parental Ketamine.
Algorithm:

Suitable for Ketamine?

Obtain Written Consent

Able to pre-treat with Topical Anaesthetic?

+YES Use topical LA (eg Emla for 45 mins)

Calculate dose from weight (2mg/kg) (suggest calculated dose table)

Give im Ketamine and Atropine (0.01mg/kg) (suggest calculated dose table)

Start Monitoring
 +ECG
 +Pulse Oximetry
 +Airway maintenance
 +Oxygen Supplementation?

Wait 5 minutes then Assess Sedation (Eye glazing and Nystagmus)

+Sedation Inadequate?
 Supplemental dose 1mg/kg
 Wait 5 mins

Sedation inadequate?
 Stop Procedure
 Need to change to General Anaesthetic Option

Sedation Adequate

Inject Local Anaesthetic to treatment area

Maximum Procedure time 30 mins

Recovery Position
Quiet, Appropriately staffed, Observed Area
Continue Monitoring (Pulse Oximeter)

Home when walking (normally 90 mins)

Information card to parents

Audit treated patients

Contraindications: (Evidence levels 4 and 5)

- A full meal within 3 hours
- A high risk of laryngospasm (active respiratory infection, active asthma, age less than 3 months)
- Patients with severe psychological problems such as cognitive or motor delay or severe behavioural problems.
- Significant cardiac disease (angina, heart failure, malignant hypertension)
- Intracranial hypertension with CSF obstruction.
- Intra-ocular pathology (glaucoma, penetrating injury)
- Previous psychotic illness
- Hyperthyroidism or Thyroid medication
- Porphyria
- Prior adverse reaction to Ketamine
Procedure: Induction: (evidence levels 2, 3, 4 and 5)

- Have and use monitoring. The minimum required is pulse oximetry.
- Have a procedure sheet capable of recording; Staff involved, pre-sedation assessment, drug dosage and timing, sequential heart rate and saturation as well as a measure of sedation e.g. GCS
- Obtain written consent from parents.
- In children, the intra-muscular route is preferred.
- If time is available, prepare the injection site with 45 mins pre-treatment with local anaesthetic cream (emla, ametop)
- Use an initial dose of 2mg per Kg body weight. (Evidence level 3)
- A supplementary dose of 1mg per Kg may be given. (Evidence level 3)
- Atropine 0.01mg/kg (dose range 0.1 to 0.5mg) reduces the salivation reaction to ketamine. (Evidence level 3)
- It is suggested that a Weight - Dose chart be pre-calculated and used.
- There is no evidence of improved emergence phenomena if midazolam is used as a supplement (Evidence level 2)

Procedure: Management: (evidence level 4 and 5)

- After 5 minutes, the patient will be sedated which will be diagnosed by glazed eyes and nystagmus.
- This condition will last for approximately 30 mins
- Apply local anaesthetic to the area to be treated (Level 4)
- Continue recording observations during the procedure

Procedure: Recovery: (evidence level 4 and 5)

- 30 minutes after induction the patient should be taken to a dedicated quiet monitoring area where minimal stimulation (including from monitoring) should be allowed so as to prevent emergence phenomena. Consequently monitoring should use pulse oximetry but not blood pressure monitoring unless indicated.
- The child should be monitored by staff trained in the management of sedated children
- Observations should be continued and recorded until recovery is deemed complete.
- Recovery should be complete within 90 minutes. (Evidence level 4)
- Allow home with carer when able to walk.
- Written discharge information should be issued containing details of possible problems to be expected and their management.

Potential Complications: (evidence level 2, 3, 4)

Airway:

- Noisy breathing is usually due to airway mal-position and occurs at an incidence of <1%. This can normally be corrected by routine airway position management.
- In rare cases mild laryngospasm may occur (0.3%). The reported incidence of intubation for laryngospasm is 0.02%

Vomiting: up to 10% incidence

Lacrimation and salivation: <10% and can be reduced with atropine premedication

Transient rash

- 10%

Transient clonic movements

- <5%

Emergence Phenomena

- <20%

2004

Review date - January 2005
REFERENCES:

11. Petrack EM, Marx CM, Wright MS. Intramuscular ketamine is superior to meperidine, promethazine and chlorpromazine for paediatric emergency department sedation. Archives of pediatric and adolescent medicine.1996; 150:676-681
Appendix 2
Example:

EMERGENCY DEPARTMENT SEDATION RECORD

Date: A&E No: Patients Name: DOB:

Details of procedure to be performed:

Reason for sedation:

Personnel present (and roles):

Details of sedation technique planned:

<table>
<thead>
<tr>
<th>Isolated Sedation only</th>
<th>yes/no</th>
<th>Sedation with block/L.A</th>
<th>yes/no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conscious Sedation Analgesia</td>
<td>yes/no</td>
<td>Block/Analgesia</td>
<td>yes/no</td>
</tr>
<tr>
<td>Sedation/Inhalational</td>
<td>yes/no</td>
<td>Other (specify)</td>
<td></td>
</tr>
</tbody>
</table>

Checklist: ASA Status: (circle status)

Consent: yes/no (written yes/no) ASA 1 (Fit & healthy no systemic disease)

Procedure explained: yes/no ASA 2* (Mild systemic disease, not debilitating)

Check last meal/drink: yes/no when: ASA 3* (Significant systemic disease, limiting)

Check equipment: yes/no ASA 4* (Will not survive without operation)

Monitoring used: yes/no ASA 5* (Resuscitation simultaneous with surgery)

Carer on discharge: yes/no * = Details:

Baseline observations:

Pulse: Resp Rate: SaO2: GCS:

Details of Sedation Procedure:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Route</th>
<th>Initial Dose</th>
<th>Subsequent Doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I.V Access gained: yes/no Details:

Oxygen given: yes/no

Entonox/N2O: yes/no

Details of complications & further interventions during/following sedation/recovery:

Nausea/vomiting: yes/no

Delayed recovery: yes/no

Recovery Agitation: yes/no

Distress Score:

Recovery Observations:

Pulse: Resp Rate: SaO2: GCS:

Time Sedation given: Time recovered: Time Discharged: